

Thermodynamic modelling of the Al–Co–Mn system

Mehdi Noori and Bengt Hallstedt

Crystal structure

Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University

Objectives

- Model thermodynamically the Al–Co–Mn ternary system by using experimental data in the literature.
- Optimize the ternary interaction parameters in the Al–Co–Mn.
- Include the Al–Co–Mn ternary parameters in the high entropy alloy thermodynamic database to give a reliable calculation.

Table 1: Crystallographic information of Al–Co–Mn system.								
Phase label	also known	Prototype	Pearson	Space	Struktur-			
label	as	5 I	symbol	group	bericht			
fcc	γ	Cu	cF4	$Fm\overline{3}m$ (225)	<i>A</i> 1			
bcc	lpha	W	cI2	$Im\overline{3}m$ (229)	A2			
hcp	ϵ	Mg	hP2	$P6_{3}/mmc$ (194)	A3			
B2_BCC	eta	CsCl	cP2	$Pm\overline{3}m$ (221)	B2			
α -Mn		α -Mn	cI58	$I\overline{4}3m$ (217)	A12			
β -Mn		β -Mn	cP20	P4 ₁ 32 (213)	A13			
Al_5Co_2		Al_5Co_2	hP28	$P6_{3}/mmc$ (194)	$D8_{11}$			
$O-Al_{13}Co_4$		$Al_{13}Co_4$	oP102	<i>Pmn</i> 21 (031)				
$Y-Al_{13}Co_4$		$Al_{13}Co_4$		C2/m (012)				
$M-Al_{13}Co_4$		$Al_{13}Fe_4$	mC102	C2/m				
Al_9Co_2		Al_9Co_2	mP22	$P2_{1}/c$ (014)				
Al ₃ Co		Al ₃ Co						
γ_2 -Al $_8$ Mn $_5$		Al_8Cr_5	hR26	<i>R</i> 3 <i>m</i> (160)	$D8_{10}$			
γ_1 -Al $_8$ Mn $_5$		Cu_5Zn_8	cI52	$I\overline{4}3m$ (217)	$D8_2$			
$LT-Al_{11}Mn_4$		$Al_{11}Mn_4$	aP15	$P\overline{1}$ (002)				
$HT-Al_{11}Mn_4$		Al_3Mn	oP156	Pnma (062)				
λ -Al4Mn		Al4Mn- λ	hP586	$P6_{3}/m$ (176)				
μ -Al4Mn		Al4Mn- μ	hP574	$P6_{3}/mmc$ (194)				
Al_6Mn		Al_6Mn	oC28	<i>Cmcm</i> (063)	$D2_h$			
$Al_{12}Mn$		$Al_{12}W$	cI26	$Im\overline{3}$ (204)				
T-AlCoMn	ζ	$Al_{62}Mn_{12}Ni_4$	oC156	Cmcm				

Conclusion

- Al–Co–Mn ternary system was thermodynamically modelled.
- Liquidus and solidus datapoints were used to optimize ternary liquid parameters and calculate liquidus surface.

Acknowledgment

This work was supported by German Research Foundation (DFG) within the collaborative research SPP-CCA (HA5382/61).

References

- [1] M Ostrowska and G Cacciamani. Critical evaluation and thermodynamic modeling of the Al–Co–Fe system. *J. Alloys Compd.*, pages 553–568, 2019.
- [2] Y Du, J Wang, J Zhao, J C Schuster, F Weitzer, R Schmid-Fetzer, M Ohno, H Xu, Z K Liu, Sh Shang, et al. Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system. *Int. J. Mater. Res.*, 98(9):855–871, 2007.
- [3] W Huang. An assessment of the Co–Mn system. *Calphad*, 13(3):231–242, 1989.
- [4] R Kainuma, M Ise, K Ishikawa, I Ohnuma, and K Ishida. Phase equilibria and stability of the B2 phase in the Ni–Mn–Al and Co–Mn–Al systems. J. Alloys Compd., 269(1):173– 180, 1998.
- [5] T Gödecke and W Köster. The ternary system cobalt-mangenese-aluminum. *Z. Metallkd.*, 63:422–430, 1972.

Binaries: Al–Co, Al–Mn, and Co–Mn

1200	1800	1400	

Gödecke and Köster [5].

Figure 8: Isoplethal section of Al–Co–Mn from equiatomic Al–Co to pure Mn with experimental data from Gödecke and Köster [5] and Kainuma et al. [4].

Figure 9: Isoplethal section of Al–Co–Mn at 45 wt.% Mn with experimental data from Gödecke and Köster [5].