

Calphad modeling in High Entropy Alloys (HEA)

Calphad part of the project "High-throughput experimental and Calphad screening of CCAs (Hi-TeCC) – towards new alloys with exceptional mechanical properties".

With Christian Haase and Fabian Kies (IEHK, RWTH Aachen University)

Mehdi Noori, Bengt Hallstedt

SPP CCA/HEA Meeting Karlsruhe, 25-27 March, 2019

- Finding new alloys with exceptional mechanical properties
 - → Advancing from HEA to CCAs
- Alloy selection with 7 components
 - → Elements: Fe-Cr-Co-Mn-Ni-Al-C
- Not sufficient experimental data for HEA/CCA

- Development of database for CCAs
 - → 21 binary systems included
 - \rightarrow 28 of 35 possible ternary systems included
 - → Thermodynamic modelling of AI-Co-Fe, AI-Co-Mn, AI-Mn-Ni
- Calphad prediction of precipitates (e.g. B2, κ) and phase stabilities

Fe-2%Mn-8%AI-0.2%C, cooling 10K/s from 1400 C, quenched from 870 C.

I. Zuazo et al, JOM 66 (2014) 1747-58.

Ni-V system

Crystallographic info. of Ni-V system

Phase label	Prototype	Pearson symbol	Space group	Struktur- bericht	Wyckoff positions	Configu- rations
Ni-fcc	Cu	cF4	Fm-3m (225)	A1		
Ni ₈ V	NbNi ₈	tl18	<i>I4/mmm</i> (139)	-	2a, 8h, 8i	8
Ni ₃ V	TiAl ₃	t18	<i>I4/mmm</i> (139)	D0 ₂₂	2a, 2b, 4d	8
Ni ₂ V	MoPt ₂	016	<i>Immm</i> (71)	-	2a, 4i	4
σ	$Cr_{0.49}Fe_{0.51}$	tP30	P4 ₂ /mnm (136)	D8 _b	2a, 4f, 8i ₁ , 8i ₂ , 8j	32
NiV ₃	Cr₃Si	сР8	Pm-3n (223)	A15	2a, 6c	4
V-bcc	W	cl2	Im-3m (229)	A2		

Ni-V ab initio TDB

Development of Ni-V binary system

Co-Cr-Mn 800 C isothermal section

AI-Co-Fe 650 C isothermal section

Experimental work from T. Kozakai et al., Z. Metallkd., 90 (1999) 261-66 • Figure out Heusler phases

Ternary interaction parameters

Crystallographic info. of Al-Co-Fe

Phase label	Prototype	Pearson symbol	Space group	Strukturbericht
Al ₅ Co ₂	Co_2AI_5	hP28	Р6 ₃ /ттс (194)	D8 ₁₁
Al ₁₃ Co ₄	Co ₄ Al ₁₃	mC100	<i>C2/m</i> (012)	-
Al ₉ Co ₂	Co ₂ Al ₉	mP22	P2 ₁ /a (007)	-
AlCo	CsCl	cP2	<i>Pm-3m</i> (221)	B2
AlFe	CsCl	cP2	<i>Pm-3m</i> (221)	B2
AlFe ₃	Fe ₃ Al	cF16	Fm-3m (225)	D0 ₃
Al ₂ Fe	FeAl ₂	aP18	<i>P1</i> (001)	-
Al ₁₃ Fe ₄	Fe ₄ Al ₁₃	mC102	<i>C2/m</i> (012)	-
Al ₅ Fe ₂	Fe_2AI_5	оС24	<i>Cmcm</i> (061)	-
Al ₂ CoFe	AlCu ₂ Mn	cF16	Fm-3m(225)	L2 ₁
AlCo ₂ Fe	AlCu ₂ Mn	cF16	Fm-3m(225)	L2 ₁

Al-Co-Fe ab initio calculation

Future Work

The calculation is a

Al-Mn-Ni 1000 C Isothermal section

Experimental work from

18

Thank you for your attention!

Thanks to DFG for financing through SPP 2006 HEA/CCA

Mehdi Noori

IWM – Institut für Werkstoffanwendungen im MaschinenbauRWTH Aachen UniversityAugustinerbach 452062 Aachen

www.iwm.rwth-aachen.de