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• FCC based “high entropy” alloys (NiCoCr and Cantor)

• Deformation substructure evolution by dislocation plasticity 
and twinning and relation to work hardening

• FCC -> HCP phase (e martensite) transformation and its 
effects on deformation

• Cold-rolling, recrystallization and prospects for achieving 
extraordinary strength / ductility combinations

• Summary

Outline
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Tensile Testing of Equiatomic
Ni-Co-Cr vs. Cantor Alloy

Miao, Slone, Niu, Bei, Ghazisaeidi, Pharr, Mills, Acta Mater, 2017

• Mean grain size 15 microns
• High strength and exceptionally large hardening rates

• Large hardening rates persist at room temperature 
(compared with CrMnFeCoNi Cantor alloy)
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Substructure Analysis:
RT Deformed Ni-Co-Cr

Miao, et al., Acta Mater., 132, 35–48 (2017)

After constant strain rate testing at RT:
• Dislocation activity at small strain (1.5%)
• More frequent extended stacking faults at modest strains (6.3%) 
• Extensive twinning at 25% and above strain
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Weak Beam Dark Field (WBDF) 
STEM Imaging 

Systematic row pattern

Systematic row pattern

g 2g 3g-g

g 2g-g

ADF detector

ADF detector

q In weak beam dark field (WBDF) 
STEM imaging, high order 
diffraction such as 3g is in Bragg 
condition.

q In WBDF STEM method, g 
reflection is used for imaging and 
objective aperture used to select g 
reflection, thus avoiding the 
contribution or interaction from other 
reflection.    

Strong beam imaging 

Weak beam dark field imaging 
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Weak Beam STEM  Diffraction Contrast
Imaging of Dissociated Dislocations 

• Variable dissociation 
distance commonly 
observed

• SFE measurement 
possible

• Assume equilibrium 
conditions (?)

B=111

Smith, et al, Acta Mater. 110 (2016) p. 352
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LAADF STEM along <110> Zone:
RT Deformed Ni-Co-Cr

After constant strain rate 
testing at RT for 25%:

• Fine scale nano-
twinning 

• Multiple slip/twin 
systems operative

• Thin laths of HCP 
structure always in 
conjunction with 
nanotwins

Miao, et al., Acta Mater., 132, 35–48 (2017)
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Substructure Analysis:
77K Deformed Ni-Co-Cr

Miao, et al., Acta Mater., 132, 35–48 (2017)

After constant strain rate testing at LN temperature:
• Dislocation activity at small strain (1.5%)
• More frequent extended stacking faults at modest strains (6.3%) 
• Extensive twinning at 25% strain and above
• Additional reflections observed in SAD patterns
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Center of Symmetry MapHAADF-STEM

Twin boundaries 

HCP 
stacking 

Matrix

HCP HCP

5nm

Matrix Twin

HAADF STEM along <110> Zone:
77K Deformed 29% Ni-Co-Cr

Consistent Orientation Relationship:
{0001}hcp || {111}fcc and <1120>hcp || <110>fcc

Identical to e martensite in high Mn TRIP steels (but much smaller vol. fraction)

(0001)hcp(111)fcc

-

[1120]hcp
-[110]fcc

-

Twin
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Twins in FCC form by the successive movement of 1/6<112> 
Shockley partial dislocations on adjacent glide planes:
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Relationship Between Twinning 
and HCP Formation
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FCC to HCP Phase transformation can also occur by 
sequential motion of partials on every other {111} plane:

1/6<112>

HCP stacking 

FCC Matrix
Twin

HCP

FCC Matrix
HCP
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Center of Symmetry MapDFT Calculations

Relative Stability for FCC and 
HCP for NiCoCr

• Quasi-harmonic approximation
• Values for 6 distinct cells with random atomic arrangement
• HCP phase favored relative to FCC phase below approx. 1000°C

Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)

HCP stacking 

FCC Matrix

Twin

HCP

FCC Matrix
HCP

Twin

Partial
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DFT of Planar Fault Energies for 
Twinning and HCP Formation

HCP formation energetically favored at SFs and twin boundaries
Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)
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DFT of Planar Fault Energies for 
Twinning and HCP Formation

HCP formation energetically favored at SFs and twin boundaries
Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)
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Source of Partials Creating HCP?

• Fine scale nanotwinning
• Thin HCP laths at stacking faults and twin boundaries
• Cross-slip to conjugate {111} promotes HCP formation

Center of Symmetry MapHAADF-STEM

2nm

HCP 
stacking 

SFSF

SF

Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)
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DFT Calculations

Atomistic Calculations
To “Mimic” DFT

Prohibitive to perform DFT for studying 
dislocation/twin/HCP interactions

Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)

DFT indicates that Co 
could provide a 
surrogate for NiCoCr: 

Atomistic simulations 
with LAMMPS enables 
large-scale defect 
calculations

Co potential from P. 
Purja Pun, Yamakov
and Mishin, MSMSE 23, 
065006 (2015)



16

EAM Calculation of Dislocation/Twin 
Interaction Using Co Potential

Mechanism for heterogenoeus nucleation of HCP laths 
at twin boundaries in FCC Co (surrogate for NiCoCr)

90° partial leading 30° partial leading 

fcc hcp

Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)
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Analogous Mechanism 
for Twin Growth

Fe-28Mn-3.5Si-2.8Al TWIP Steel
Idrissi, et al, Phil. Mag., 93 (2013) Can occur for 

interaction of mixed 
(60°) ½<110> 

dislocations with 
pre-existing twins

Mori and Fujita, Acta Metall. 28 (1980)
Cu-11%Al FCC Solid Solution

on (111) on (11-1)Stair-rod
partial
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LAADF STEM along <110> Zone:
77K Deformed Ni-Co-Cr

After constant strain 
rate testing at LN for 
53%:

• Fine scale nano-
twinning 

• Thicker HCP laths 
act as strong barriers 
to conjugate 
slip/twinning

Miao, et al., Acta Mater., 132, 35–48 (2017)

• For slip transmission, 
need to activate <c> 
component dislocations 
or twinning in HCP 
laths
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fcc hcp• FCC/HCP 
interface poses a 
barrier to 
dislocation 
motion: 
Strengthening

• Dislocations are 
accommodated 
within the HCP 
region: stress 
concentrations 
minimized

• HCP regions can 
grow or “heal” by 
dislocation 
motion 

Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)

Dislocation Interaction 
with HCP/FCC Interface
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HCP e Martensite in FCC HEAs
After LN Deformation

• HCP phase 
formation at 
twin 
boundaries in 
NiCoCr

• Only 
twinning 
observed in 
Cantor alloy –
HCP phase is 
absent

• Related to 
enhanced 
properties of 
NiCoCr ?

NiCoCr

“Cantor”
Alloy

NiCoCr
MnFe

Niu, LaRosa, Miao, Mills, Ghazisaeidi, Nature Comm. (2018)
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Chemistry/Magnetism on 
Phase Stability

Mn / Fe (with magnetism) eliminates the HCP 
preference for NiCo-X
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• HCP laths = e martensite

• In contrast to dual phase 
TRIP steels, volume 
fraction of HCP remains 
very small in NiCoCr

• May still be key to 
extraordinary hardening
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Twin structures 
and high 

dislocation 
density still 

present in Non-
RX grains !600°C / 1hr

20 µm

C.E. Slone et al, Acta Mater, 165 (2019)

RX defined as <3° misorientation

20 µm

500 nm

Twin 
Reflections

70% reduction in thickness, 
then anneal…

Partially Recrystallized (RX) NiCoCr



25

Twin structures, 
high dislocation 

density…

and HCP 
phase…

still present in 
Non-RX grains !

C.E. Slone et al, Acta Mater, 165 (2019)

Partially Recrystallized (RX) NiCoCr

600°C / 1hr
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Partially RX Microstructures:
NiCoCr vs. Cantor Alloy
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NiCoCr

Partially RX microstructures offer route to achieve much higher 
strengths while retaining significant ductility
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Conclusions

• High entropy FCC based alloys have conventional dislocation cores 
with highly variable dissociation distances:

• SFE in concentrated solutions is a spatially varying quantity
• Measurement of SFE from dissociation distance is problematic

• Twinning prominent at larger strains in both Cantor and NiCoCr –
contributing to strong work hardening and large ductility

• In NiCoCr, HCP phase transformation at twins and stacking faults 
may impart further enhancement in work hardening

• Extreme strength and ductility can be achieved in partially-
recrystallized states (both NiCoCr and IN740H)

• Alloy design crucially aided by advanced characterization and 
modeling


