

A. Fantin¹, S. Kasatikov², A. Manzoni³, G. Schumacher^{1,3}, J. Banhart^{1,3}

X-ray absorption spectroscopy: from synchrotron radiation to shortrange order determination

¹Technische Universität Berlin ²Saint-Petersburg State University ³Helmholtz-Zentrum Berlin

Outline

Synchrotron radiation X-ray absorption spectroscopy

Short-range order and local distortions

Results on $AI_8Co_{17}Cr_{17}Cu_8Fe_{17}Ni_{33}$

- Theoretical
- Experimental

Conclusions and general remarks

The magic world of synchrotrons

X-ray absorption spectroscopy I: setup

 I_F synchrotron source Fluorescence double crystal detector monochromator Z-1 filter/slits I₀ transmitted $\mu(E), \mathbf{X}$ incident flux flux monitor polychromatic monitor x-rays monochromatic fluorescence x-rays x-rays

Transmission mode

$$I = I_0 \exp(-\mu(E)x)$$

 $\mu(E)\mathbf{x} = \ln\left(\mathbf{I}_0/\mathbf{I}\right)$

Fluorescence mode

 $\mu(E) \propto I_F/I_0$

LISA beamline BM-08

X-ray absorption spectroscopy II: qualitative interpretation

X-ray absorption spectroscopy II: qualitative interpretation

XANES: X-ray Absorption Near-Edge Structure EXAFS: Extended X-ray Absorption Fine Structure

Mainly single scattering contributions

High energy photoelectrons

50 – 1000 eV from edge Transition to continuum

Local structure:

Bond distance Number and type of neighbors Disorder

Multiple scattering contributions

Low energy photoelectrons < 50 eV from edge

Transition to unfilled, nearly bound states, continuum

Local site symmetry Charge state Orbital Occupancy

XAS IV: theory, EXAFS equation

Interference between outgoing wavefunction and backscattered wavelets:

Outgoing photoelectron wavefunction: damped propagating spherical wave

Backscattered wavelets

$$Sp(k) = A(k) \frac{e^{ikR}}{kR} e^{-R/\lambda^*(k)}$$

 $\chi_j(\mathbf{k}) = B_j(k) \sin[\varphi_j(k)]$

EXAFS equation

Amplitude:

 S_0^2 : amplitude reduction factor

 N_j : Number of neighbors; the higher, the larger the signal $f_j(k)$: (back)scattering amplitude; the stronger, the larger the signal

 σ_j : static + thermal disorder; amplitude damping at large k $\lambda^*(k)$: electron mean free path (around 10-20 Å in the EXAFS region)

Phase:

 $\delta_i(k)$: phase-shift from photoelectron (back-)scattering

XAS IV: theory, EXAFS equation

EXAFS equation

$$\chi(k) = S_0^2 \sum_j \frac{N_j f_j(k)}{kR_j^2} e^{-2R_j/\lambda^*(k)} e^{-k^2 \sigma_j^2} \sin[2kR_j + \delta_j(k)]$$

Amplitude:

 S_0^2 : amplitude reduction factor (incomplete overlap initial-final state) N_j : Number of neighbors; the higher, the larger the signal $f_j(k)$: (back)scattering amplitude; the stronger, the larger the signal σ_j : static + thermal disorder; amplitude damping at large k $\lambda^*(k)$: electron mean free path (around 10-20 Å in the EXAFS region)

Phase:

 $\delta_i(k)$: phase-shift from photoelectron (back-)scattering

 $f_j(k)$, $\delta_j(k)$ depend on atomic number *Z* of the scattering atom: we can determine the species of the neighboring atom ($\Delta Z \ge 3$).

Known $f_i(k)$, $\delta_i(k)$, we can determine

N coordination number of neighboring atom (< 10 - 20%) *R* distance to neighboring atom(s) (< 0.01-0.02 Å) σ^2 mean square disorder of neighbor distance

XAS IV: theory, EXAFS equation

EXAFS equation

$$\boldsymbol{\chi}(\mathbf{k}) = \mathbf{S}_0^2 \sum_j \frac{N_j f_j(k)}{kR_j^2} e^{-2R_j/\lambda^*(k)} e^{-k^2 \sigma_j^2} \sin[2kR_j + \delta_j(k)]$$
Ni foil in R space

Amplitude:

 $R_i = j^{\text{th}}$ average shell distance S_0^2 : amplitude reduction factor (incomplete overlap initial-final state) $\propto S_0^2, N_i, f_i$ N_i : Number of neighbors; the higher, the larger the signal $f_i(k)$: (back)scattering amplitude; the stronger, the larger the signal σ_i : static + thermal disorder; amplitude damping at large k (A⁻⁴) 25 $\lambda^*(k)$: electron mean free path (around 10-20 Å in the EXAFS region) X(R) 20 $\propto \sigma_i$ Phase: $\delta_i(k)$: phase-shift from photoelectron (back-)scattering 10 $f_i(k)$, $\delta_i(k)$ depend on atomic number Z of the scattering atom: we can determine the species of the neighboring atom ($\Delta Z \ge 3$). 0 2 5 Radial distance (Å) Known $f_i(k)$, $\delta_i(k)$, we can determine Short-range order *N* coordination number of neighboring atom (< 10 - 20%) R distance to neighboring atom(s) (< 0.01-0.02 Å) _ocal distortions σ^2 mean square disorder of neighbor distance Zentrum Berlin Seite 10

Short-range order, local distortions and EXAFS

$$\chi(\mathbf{k}) \sim S_0^2 \sum_j \frac{N_j f_j(k)}{kR_j^2} e^{-2R_j/\lambda^*(k)} e^{-k^2 \sigma_j^2} \sin[2kR_j + \delta_j(k)]$$

Short-range order

- neighboring atom species ($\Delta Z \ge 3$)
- coordination number N of neighboring atom (< 10 - 20%)

Tricky: depends on the specimen constituents

Local distortions

- *R* distance to neighboring atom(s) (< 0.01-0.02 Å)
- σ^2 mean square disorder of neighbors distance

Generally easy to determine

$AI_8Co_{17}Cr_{17}Cu_8Fe_{17}Ni_{33}$

	Atom	Ζ	
Short-range order	AI	13	
 neighboring atom species (△Z ≥ 3) 	Cr	24	•••
 coordination number N of neighboring atom (< 10, 20%) 	Fe	26	
(~ 10 - 20%)	Со	27	
Tricky: depends on the specimen constituents	Ni	28	
	Cu	29	

Short-range order in Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃

Pair correlation data: simulation

Courtesy of Prof. Michael Widom, Carnegie Mellon University

Does short-range order exist in $AI_8Co_{17}Cr_{17}Cu_8Fe_{17}Ni_{33}$?

Bond	d (Å)	g _{αβ} (r)
AI-AI	2.69	4.54
Al-Co	2.52	6.16
Al-Cr	2.67	4.62
Al-Cu	2.54	12.00
Al-Fe	2.60	5.03
Al-Ni	2.51	10.54

From simulation (MonteCarlo + Molecular dynamics):

- AI-Ni and AI-Cu bonds preferred
- AI-AI bond suppressed

Experimentally, AI preferred bonding not yet directly proved

Local distortions in Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃

1st shell bond lengths from EXAFS:

- V-shaped trend: minimum at Co
- · Atomic sizes: minimum at Ni
- Ni: largest mismatch with atomic size considerations

Local distortions in Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃

1st shell bond lengths from EXAFS:

- V-shaped trend: minimum at Co
- Atomic sizes: minimum at Ni
- Ni: trend mismatch with atomic size considerations
- 1st shell bond lengths from simulations:
- V-shaped trend: minimum at Co
- Al, Co and Ni: largest mismatches with experimental data

Conclusions and general remarks

Synchrotron techniques to resolve short-range order

- X-ray absorption spectroscopy:
 - especially effective if the system has most of its constituents with $\Delta Z \ge 3$ (e.g. Ti-Zr-Hf based)
 - complementary structural simulations are needed for comparison with XAS results
 - Bond lengths and distortions around specific elements are generally easy to determine
- X-ray / neutron pair distribution function (similar restrictions applies in the case of X-rays)

 $System AI_8Co_{17}Cr_{17}Cu_8Fe_{17}Ni_{33}\\$

- First simulations support experimental trend 1st shell bond length distances
- o AINi and AICu preferred ordering to confirm / clarify with experimental data
- First manuscript on EXAFS in $Al_8Co_{17}Cr_{17}Cu_8Fe_{17}Ni_{33}$ close to submission
- More at the poster (BA1170/39-1) session: XANES, Bader charges ...

Measurements at the beamlines require generally around-the-clock work every day for up to a week

- Anybody interested to join the experiments / giving a helping hand? If yes, you are welcome!
- Open for collaborations

Thank you for your attention

