Structure and Mobility of Grain Boundaries in High Entropy Alloys: A Molecular Dynamics Study

TECHNISCHE UNIVERSITÄT DARMSTADT

Daniel Utt, Alexander Stukowski, and Karsten Albe Materialmodellierung, Technische Universität Darmstadt

Motivation				
 Reduced grain growth in high entropy alloys (HEAs) has been observed and there are 4 	 Solute drag in an average matrix. Solute segregation to the GBs. 	1)	2)	3)
potential reasons:	1 Secondary phase formation at the CDa			

- Structural changes at the grain boundaries (GBs) caused by the intrinsic lattice distortions.
- 4. Secondary phase formation at the GBS.
- We want to determine which one of these is responsible for the reduced grain boundary mobility.

Computational methods

- Σ11(332)(110) symmetrical tilt grain bounadary (STGB) in bicrystalline configuration.
- We performed classical molecular dynamics simulations using LAMMPS using embedded atom method (EAM) potentials for the pure metals and the model CuNiCoFe HEA. [1,2]
- We derive an average atom (avg.-atom) potential [3] for the model HEA.
- Migration of the planar STGB driven by a synthetic driving force. [4]
- Solute segregation is simulated using a Monte Carlo algorithm. [5]

Grain Boundary Structure

Is there a structural difference for the $\Sigma 11$ STGB in the HEA caused by the intrinsic lattice distortions? $T = 0 \text{ K} | \bullet \text{Other} | \bullet \text{FCC} | \bullet \text{HCP}$

Grain Boundary Segregation

What is the influence of solute segregation to the $\Sigma 11$ STGB on its mobility?

- Almost identical 0 K STGB structures. The repeating structural units for this STGB are marked in white. [6]
- Localized deviation from the ideal configuration in the HEA which could originate from local variations of the stacking fault energy or the intrinsic lattice distortions.

Synthetic Driving Force

Is the mobility of the $\Sigma 11$ STGB systematically reduced compared to other FCC metals?

$$P = \frac{\Delta e}{\Omega}, \quad v = M \cdot P, \quad M = M^{\infty} \exp\left(\frac{-Q_m}{KT}\right)$$

$$T/K$$

$$1400 \quad 1000 \quad 800$$

$$\Delta e : 15 \text{ meV/at}$$

$$Pure \text{ Ni}$$

$$M = M^{\infty} \exp\left(\frac{-Q_m}{KT}\right)$$

$$\frac{\Delta e : 15 \text{ meV/at}}{Pure \text{ Ni}}$$

- Grain boundary solute segregation pins the $\Sigma 11$ STGB.
- Cross check: An inserted Cu layer stops the STGB once it is reached.
- The inserted Cu layer strongly attracts the STGB.

How does the pinning energy of the solute cloud scale with temperature?

• We use a driving force of 0.1 eV/at to move the STGB away from the solute cloud.

- The HEA does not show a significantly reduced mobility for this Σ11 STGB. Its mobility is almost identical to its average matrix counterpart.
- All samples show a strong correlation between their respective $\gamma_{\rm ISF}$ and $\gamma_{\rm USF}$, and the activation barrier for GB migration. This can be explained by the GB migration mechanism which relies on repeated emission and retraction of Shockley partial dislocations from the GB.

• $\Delta E = E_{\text{final}} - E_{\text{initial}} / A_{\text{GB}}$

• As the Cu concentration at the STGB decreases, so does the excess energy ΔE , which is responsible for the GB pinning.

• The STGB remained stationary at its initial position for the whole temperature range at an synthetic driving force of 0.015 eV/at.

[1] Zhou et al., Phys. Rev. B, 69, 2004 | [2] Foiles & Hoyt, Tech rep., 2001 | [3] Varvenne et al., Nat. Mater., 5, 2006 | [5] Sadigh et al., Phys. Rev. B, 85, 2012 | [6] Rittner & Seidman, Phys. Rev. B, 54, 1996

contact: utt@mm.tu-darmstadt.de