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•Reduced grain growth in high entropy alloys
(HEAs) has been observed and there are 4
potential reasons:

1. Structural changes at the grain boundaries
(GBs) caused by the intrinsic lattice distor-
tions.

2. Solute drag in an average matrix.

3. Solute segregation to the GBs.

4. Secondary phase formation at the GBs.

•We want to determine which one of these is
responsible for the reduced grain boundary
mobility.
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Computational methods
•Σ11 (332) 〈110〉 symmetrical tilt grain bounadary
(STGB) in bicrystalline configuration.

•We performed classical molecular dynamics sim-
ulations using LAMMPS using embedded atom
method (EAM) potentials for the pure metals
and the model CuNiCoFe HEA. [1,2]

•We derive an average atom (avg.-atom) poten-
tial [3] for the model HEA.

•Migration of the planar STGB driven by a syn-
thetic driving force. [4]

•Solute segregation is simulated using a Monte
Carlo algorithm. [5]

Cu Ni Co Fe

Average Atom
(Avg.-Atom)

[1] Zhou et al., Phys. Rev. B, 69, 2004 | [2] Foiles & Hoyt, Tech rep., 2001 | [3] Varvenne et al., Phys. Rev. B, 93, 2016 | [4] Janssens et al., Nat. Mater., 5, 2006 | [5] Sadigh et al., Phys. Rev. B, 85, 2012 | [6] Rittner & Seidman, Phys. Rev. B, 54, 1996

Grain Boundary Structure
Is there a structural difference for the Σ11 STGB in the HEA caused by the
intrinsic lattice distortions? T = 0K | •Other | •FCC | •HCP
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Avg.-atom CuNiCoFe

•Almost identical 0 K STGB structures. The repeating structural
units for this STGB are marked in white. [6]

• Localized deviation from the ideal configuration in the HEA
which could originate from local variations of the stacking fault
energy or the intrinsic lattice distortions.

Synthetic Driving Force
Is the mobility of the Σ11 STGB systematically reduced compared to other
FCC metals?
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•The HEA does not show a significantly reduced mobility for
this Σ11 STGB. Its mobility is almost identical to its average
matrix counterpart.

•All samples show a strong correlation between their respective
γISF and γUSF, and the activation barrier for GB migration. This
can be explained by the GB migration mechanism which relies
on repeated emission and retraction of Shockley partial dislo-
cations from the GB.

Grain Boundary Segregation
What is the influence of solute segregation to the Σ11 STGB on its mobility?
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•Grain boundary solute segregation pins the Σ11 STGB.

•Cross check: An inserted Cu layer stops the STGB once it is
reached.

•The inserted Cu layer strongly attracts the STGB.

How does the pinning energy of the solute cloud scale with temperature?
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•We use a driving force of
0.1 eV/at to move the STGB
away from the solute cloud.

•∆E = Efinal− Einitial/AGB

•As the Cu concentration at the
STGB decreases, so does the ex-
cess energy∆E, which is respon-
sible for the GB pinning.

•The STGB remained station-
ary at its initial position for
the whole temperature range
at an synthetic driving force of
0.015 eV/at .


