

Sicherheit in Technik und Chemie

SPP 2006 Meeting, 8th October 2021

PRESENTATION OF INTERDISCPLINARY PROCECT ON HEA PROCESSING

SURDIA (SURFACE DEGRADATION PHENOMENA AND UTILIZATION OF INNOVATIVE ALLOYS) - CURRENT R&D AT BAM -

T. Richter¹, M. Rhode^{1,2}, D. Schröpfer¹,

¹ Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany

² Otto-von-Guericke-University, Magdeburg, Germany

HEAs on the way for application in components

S BAM

Interdisciplinary collaboration to investigate degradation by processing

08.10.2021 Processing of HEAs/MEAs and influence on application properties - R&D at BAM Berlin

Current research at BAM Berlin

nthesis laboratory

ng facility

naces

Basic research on HEAs/MEAs:

- Weldability by
 - Tungsten Inert Gas (TIG) Welding and
 - Friction Stir Welding (FSW)
- Machinability by
 - Conventional milling and
 - Ultrasonic assisted milling

Processing influence on application properties

- Mechanical performance of welded joints
- Surface integrity \rightarrow electrochem. and high-temperature corrosion
- Hydrogen diffusion and adsorption

Experimental -Materials

At%	Со	Cr	Fe	Mn	Ni	HV 0.5
HEA	19.7	20.7	19.6	20.1	19.9	172
MEA	33.0	34.3	-	-	32.7	251

Preparation of two alloys (provided by group of Jun.-Prof. G. Laplanche, RUB):

- 1. Vacuum induction melting of elements (99.9 wt.-% purity)
- 2. Homogenizing (1200 °C for 48 h)
- 3. Rotary swaging (from diameter 40 mm to 16 mm)
- 4. Recrystallization (HEA: 1020 °C, MEA: 1060 °C, for 1 h)

 Weldability is a subject to a complex interaction of material, welding process conditions and construction/component design

→ Current research regarding HEAs focusses on material and welding process interactions

Welding of HEAs Typical welding defects

Welding process related defects

- Pores
- Tunnel defects
- Slag inclusions...
- \rightarrow Process parameter adaption

Material related welding defects

Hot cracking (T > 200°C)

 Solidification cracks, liquation cracks

Cold cracking (T < 200° C)

- Hydrogen assisted cracking, Hardening cracks (phase transformation)
- → Temperature control (e.g. preheating, post weld heat treatment-PWHT)

Welding of HEAs First time bead-on-plate TIG welding

Shielding gas

Sample (14x80 mm)

- Shielding gas : Argon
- Root shielding gas: Argon + 7,5 % H₂

Welding of HEAs Bead-on-plate TIG welding of CoCrFeMnNi-HEA

Top side

- Full penetration
- Heat tint colors in weld seam vicinity (\rightarrow corrosion resistance!)
- Pores in weld metal (\rightarrow fatigue behavior?)
- Risse in der WEZ (\rightarrow general defect-free welding possible?)

Welding of HEAs Bead-on-plate TIG welding of CoCrFeMnNi-HEA - Microstructure

- Dendritic microstructure of weld metal \rightarrow micro-segregations
- Intergranular cracks in heat-affected zone (HAZ) of base material

Welding of HEAs Bead-on-plate TIG welding of CoCrNi-MEA

- Full penetration
- Heat tint colors in weld seam vicinity (\rightarrow corrosion resistance!)
- Pores in weld metal (\rightarrow fatigue behavior?)
- Risse in der WEZ (→ general defect-free welding possible?)

Welding of HEAs Bead-on-plate TIG welding of CoCrNi-MEA - Microstructure

- Dendritic microstructure in weld metal

- Also intergranular cracking in HAZ

Welding of HEAs Could solid state welding be the answer instead of fusion welding?

Recently, pre-studies at BAM for process development:

S BAM

Welding of HEAs Friction stir welding – challening parameter adaption (ongoing work)

Machinability and surface integrity

 Machinability characterized by: cutting force, tool wear & life, chip formation and surface integrity

 → Surface integrity is the key challenge for machinability of components in highly stressed or safety-relevant areas

Machinability and surface integrity Parameters for milling tests

cutting speed feed rate per cutting edge

- rotational speed
- feed rate
- cutting depth
 - feed force in

feed-/ x-direction

passive force in depth-/ z-direction

Machinability and surface integrity Regarded parameters for milling tests

- 6 mm ball nose end milling tool with 4 cutting edges (cemented carbide / PVD coated)
- Ultrasonic assisted milling (USAM modified 5-axis machining portal)
- 3D-cutting force analysis with a dynamometer (Kistler)

Machinability and surface integrity Tool wear - Comparison HEA and MEA

Unused cutting edge (as delivered)

Used cutting edge HEA-tests

Used cutting edge MEA-tests

- Cutting edges almost "as good as new" after machining experiments at HEA specimens
- → Very low tool wear with HEA (CoCrFeMnNi)
- Severe wear marks and breaks at the tool tip after machining experiments at MEA specimens
- → Applied cutting tool not suitable for MEA (CoCrNi)

Machinability and surface integrity Topography/Defects - CoCrNi-Alloy

- First tests: high surface quality, almost free of defects
- Significant influence of tool wear on the generated surface

→ Worn tool causes extensive surface defects (break-outs)

08.10.2021 Processing of HEAs/MEAs and influence on application properties - R&D at BAM Berlin

Machinability and surface integrity Residual Stresses (XRD) - Comparison HEA and MEA

CoCrFeMnNi-HEA

CoCrNi-MEA

 USAM causes reduced detrimental tensile residual stresses below the surface in the CoCrFeMnNi-HEA compared to conventional milling

\rightarrow Improved residual stress condition due to application of USAM

 With the CoCrNi-MEA the continuously increasing tool wear has a predominant influence on the residual stress state

Summary and conclusions

Basic research on HEAs/MEAs:

- Weldability/Machinability:
 - ➤ TIG fusion welding results in cracking of HAZ, Solid-state FSW promising technique → general weldability is ongoing work
 - ➤ Cracks perhaps originate from Cu-slags from EDM-cutting → in-depth characterization of different weld zones and properties necessary
 - Ultrasonic assisted milling for improved surface integrity and reduced reaction forces

Processing influence on application properties

- Mechanical performance of welded joints still open
- Surface integrity → electrochem. and high-temperature corrosion experiments are in progress
- Hydrogen diffusion and adsorption experiments in progress

Further topcis: Electrochemical corrosion properties

- Micro-segregations of elements during laser welding
- Investigated with scanning kelvin probe force microscopy
- Visualization of local Volta-potential

- Epitaxial growth of dendrites from fusion line during solidification
- \rightarrow Segregations of elements \rightarrow increased pitting susceptibility
- Dissolution and reprecipitation of Al-rich impurities (due to processing)
- \rightarrow Smaller difference potential \rightarrow galvanic corrosion risk decreases in WM

Further topics: Hydrogen diffusion in HEAs/MEAs

CoCrFeMnNi-HEA

- CoCrNi-MEA

- Similar diffusion behavior, i.e. active traps at respective temperatures
- CoCrFeMnNi: significantly higher hydrogen concentration (higher effusion rate!)
- \rightarrow Concern for hydrogen assisted (weld) cracking

Thank you for your kind attention!

M. Sc. Tim Richter

BAM, Dept. 9. – Component Safety Berlin, Germany <u>tim.richter@bam.de</u> Jun.-Prof. Dr.-Ing. Michael Rhode

BAM, Dept. 9. – Component Safety Berlin, Germany <u>michael.rhode@bam.de</u> & OvG-University Magdeburg, Germany