

High Entropy Shape Memory Alloys-Mechanical Properties and Functional Degradation Mechanisms

M.Sc. Maike Hermann

01.03.2018

Produktionstechnisches Zentrum Hannover

Project

- Finished study of mechanical engineering at Leibniz University Hannover in August 2017
- Research assistant at IW, Garbsen since October 2017
- Working in the field "materials engineering"

Institut für

Werkstoffkunde

Project:	Microstructure-Functional Behavior-Relationships				
	High Entropy Shape Memory Alloys				
Duration of project:	3 years				
Applicants:	G. Eggeler (University Bochum)				
	H. J. Maier (IW Hannover)				
Funding Institution:	DFG				
Project Partner:	M.Sc. David Piorunek				

© Leibniz Universität Hannover, IW, Prof. Dr.-Ing. Hans Jürgen Maier **Page 2** | M.Sc. Maike Hermann | 14.02.2018

High Entropy Alloy with Shape Memory Effect (HESMA)

Desired properties:

- Sluggish diffusion
- Reversible martensitic transformation
- Twinning
- "Perfect" shape recovery
- High strength
- No fatigue?

→ **Promising material** for elevated temperature applications

TiZrHfCoNiCu HESMA

- Wide temperature range (200 900 K)
- Stable shape recovery strain up to 3 %
- Work output of 5 10 J/cm³
- Yield strength up to 1200 MPa
- Atomic size difference (up to 11 %)
- Diffusion processes resistance

- **Functional and structural fatigue** •
 - SME function loose intensity with repeated loading Ο
 - Resulting in a gradual **degradation** of **functional properties** Ο
 - **Life limiting** for functional applications under cyclic conditions Ο
 - Main obstacle for a breakthrough of shape memory technology Ο
- Difficult to deform due to brittleness ۲

Institut für Werkstoffkunde

Idea

Strategy

- Complex composition to reach structural stability
- Compositions close to equiatomic group of elements

- MT does not always take place
- Negative value of enthalpy/entropy mixing
- High-temperature phase with MT

- Interatomic interaction control
- Pair enthalpy of mixing
- Equiatomic group of elements
- Valence electron concentration

Ti, at. %	Zr, at. %	Hf, at. %	Co, at. %	Ni, at. %	Cu, at. %	ΔS_{mix} , J/(mol K)	H _{Meyer} , GPa	E, GPa
16.6667	16.6667	16.6667	16.6667	16.6667	16.6667	14.897	11.19	77.8
16.6667	16.6667	16.6667	25	25	-	13.211	14.97	92.3
16.6667	16.6667	16.6667	-	25	25	13.211	13.84	82.9
16.6667	16.6667	16.6667	25	-	25	13.211	20.81	110.1
50	-	-	-	50	-	5.763	6.05	46.6

Preliminary Work

TiZrHfNiCu and TiZrHfCoNiCu HEA already showed a SMA effect

Ruhr-University Bochum

- Development and production of high purity ingots repeatable melting process and alloy production/heat treatment
- Phase stability and martensitic transformation
- Thermo-mechanical processing

University Hannover

- Material characterization and reaction in different temperature regimes
- o Thermo-mechanical fatigue testing by heating/cooling
- Investigation of fatigue behavior, crack nucleation and propagation
- o In-situ characterization of functional fatigue

Tensile and compression tests

- Material characterization
- Thermo-mechanical fatigue tests

Bending experiments

 Tempered 3 and 4-point bending tests by heating and cooling

MTS Acumen[™] Electrodynamic Test Systems 100 Hz, ± 3kN

Test Set-Up for 4-Point Bending

Heating of samples

© Leibniz Universität Hannover, IW, Prof. Dr.-Ing. Hans Jürgen Maier **Page 12** | M.Sc. Maike Hermann | 14.02.2018

Test Set-Up for 3- and 4-point bending experiments

Analytical techniques

In-situ SEM

Identification of functional degradation mechanisms: thermo-mechanical fatigue testing by in-situ heating/cooling

- Successful production of alloys with martensitic transformation
- Extensive mechanical characterization
 - o monotonic
 - \circ cyclic

Summary

- Currently small samples but upscaling possible
- First data expected end of march

