



# Solid solution strengthening in TiZrNbHfTa High Entropy Alloys

Juniorprof. Dr. Guillaume Laplanche Juniorprof. Dr. Evgeny Gurevich



Easeranwendungstechnik

# materials science and engineering

#### Priority programme

Compositionnaly complex alloys – High Entropy alloys (CCA – HEA)

SPP 2006/1, 04.04.2017, Bayreuth University

#### Motivation – State of the art

# Basic-scientific understanding of solid solution strengthening (mechanical properties) in BCC High entropy alloys

Models of solid solution strengthening:

1) diluted solid solutions -> Fleischer

$$\frac{\mathrm{d}\tau_0}{\mathrm{d}c} = f\left(\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}c}, \frac{1}{G}\frac{\mathrm{d}G}{\mathrm{d}c}\right)$$

2) concentrated solid solutions -> Labusch

**3)** New theory for FCC HEAs and MEAs

C. Varvenne et al., Acta Mater. 118 (2016) 164-176

Solid solution strengthening in BCC HEAs cannot be explained by current textbook-level theory



## **Objectives and work plan**

Processing of graded TiZrNbHfTa alloys by LMD

Microstructural and phase analyses

**Comparison LMD / bulk alloys** 

Basic scientific understanding of solid solution strenghtening in BCC HEAs

Correlation:  $\frac{\mathrm{d}\tau_0}{\mathrm{d}c} = f\left(\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}c}, \frac{1}{G}\frac{\mathrm{d}G}{\mathrm{d}c}\right)$ 



Screening

Processing of **bulk** alloys with promising chemical compositions

**Tensile tests** 



Identification of **Basic deformation mechanisms** 

# **Preliminary work – Laser Metal Deposition**

#### **Advantages**

- -> fast screening of chemical compositions
- -> relatively large sample sizes allow to assess bulk material properties

#### Local characterization of

- -> mechanical properties
- -> phases (single phase BCC)
- → grain size gradient (3 200 µm) Hall-Petch effect



### Preliminary work – investigation of a bulk TiZrNbHfTa HEA



## Planned cooperation in the frame of the priority programme

- Effect of a gradient of chemical composition on diffusion kinetics of Zr using radiotracer measurements
   Dr. S. Divinski, University of Münster
- STEM comparative study of the structures of HEAs prepared by the laser metal deposition and Bridgeman and Czochralski methods *Dr. Markus Heidelmann, University Duisburg-Essen, Germany*
- Assessment of elastic parameters of single crystals
  Dr. Michael Feuerbacher, Forschungszentrum Jülich GmbH, Germany