

Institut für Werkstoffe Gunther Eggeler

Institut für Werkstoffkunde Hans Jürgen Maier

Microstructure-Functional Behavior-Relationships in High Entropy Shape Memory Alloys

Priority Programme "Compositionally Complex Alloys – High Entropy Alloys (CCA-HEA)" (SPP 2006) Deutsche Forschungsgemeinschaft DFG

high entropy alloys and shape memory alloys

are special in terms of:

- high strength (> 1 GPa)
- slow diffusion
- twinning
- structural stability/precipitates
- phase transformation

 \rightarrow ideal system to improve our understanding of the processing-microstructure-property-relationship of HEA

Good news

TiZrHfCoNiCu HEA has been reported to feature a SMA effect

shape memory behavior measured in 3 point bending for $Ti_{16.667}Zr_{16.667}Hf_{16.667}Ni_{25}Cu_{25}$ HEA (G.S. Firstov et al., Proc. Icomat-2014)

 \rightarrow perfect system to start with

First samples already available

previous joint studies on HTSMAs, e.g. Shap. Mem. Superelasticity, vol. 1, 2015, 6-17

DSC thermal transformation behavior

objective of WP 1 to 4: validated process for high quality samples

WP 5 to 8: functional (PE and thermo-mech.) and structural fatigue

HEA are expected to demonstrate superior behavior

materials science and engineering

DIC - transformation strain

X-ray and SEM analysis

analysis of sub-systems

TEM imaging and SAED

WP9 Publications / Collaborations within SPP 2006