

High Entropy Shape Memory Alloys (HESMA)

Alloy Compositions, Processing and Microstructures

David Piorunek, Jan Frenzel, Gunther Eggeler

EG 101/32-1

Outline

- Shape memory alloys & martensitic transformation
- High entropy shape memory alloys
- Project and work programme
- Interactions in SPP

Shape memory alloys (SMAs)

SMA spring actuator

- Shape recovery
- Two types of SM effects
 - Thermal memory
 - Mechanical memory
- Effects rely on reversible martensitic transformation (MT)
- Effects are governed by phase transformation temperatures (PTT)

Martensitic transformation

4

Martensitic transformation

Martensitic transformation in Ni-Ti

High entropy shape memory alloys

Crystal structure of HESMAs

- XRD and DFT by Firstov et al. (2015)
- Ti₉Zr₉Hf₉Ni₉Cu₉Co₉-Unit cell
 - Ti-sublattice-sites occupied by Ti, Hf, Zr
 - Ni-sublattice-sites occupied by Ni, Cu, Co

- Unlike to B2, slightly triclinic
 - Lattice distortion

- B2-related triclinic P1 phase of HESMA (Firstov et al., Matec. Web Conf. 33, 2015)
- Higher configurational entropy than in binary NiTi
 - Ordered solid solution HEA

Phase transformation behavior of HESMAs

Ti_{16.667} Zr_{16.667} Hf_{16.667} Ni₂₅ Cu₂₅

(Firstov et al., Matec. Web Conf. 33, 2015)

M_s = 500 K / 217 °C

 ${\sf Ti}_{16,667}{\sf Zr}_{16,667}{\sf Hf}_{16,667}\;{\sf Ni}_{25}{\sf Cu}_{15}{\sf Co}_{10}$

RUHR

RUB

(Firstov et al., Sha. Mem. and Superelas., 2015)

M_s = 430 K / 157 °C

HESMAs made in Bochum

HESMAs made in Bochum

HESMAs made in Bochum

Project and work programme

Microstructure-Functional Behavior-Relationships in High Entropy Shape Memory Alloys

- Ingot metallurgy and compositional screening
- Characterization of martensitic transformation
- Phase stability and atomic mobilities
- Thermo-mechanical processing and heat treatment

- Basic mechanical properties
- Thermo-mechanical fatigue testing to assess functional fatigue resistance
- Identification of functional degradation mechanisms
- Structural fatigue

Processing of HESMAs

Alloy composition and PTTs

(Frenzel et al., Acta Mat. 58, 2010)

12

Nickel

Titan

Alloy composition and PTTs

(Frenzel et al., Acta Mat. 58, 2010)

Alloy composition and PTTs

(preliminary work)

(Frenzel et al., Acta Mat. 90, 2015)

Alloy composition and PTTs

Aging and phase stability

⁽Michutta et al., Acta Mat. 33, 2015)

- Elementary MT processes depend strongly on microstructure and phase stability
- Aging \rightarrow Ni₄Ti₃ precipitates
- Multi-step MTs (B2 \rightarrow R \rightarrow B19')

Aging and phase stability

⁽Michutta et al., Acta Mat. 33, 2015)

- Elementary MT processes depend strongly on microstructure and phase stability
- Aging \rightarrow Ni₄Ti₃ precipitates
- Multi-step MTs (B2 \rightarrow R \rightarrow B19')
- B19' nucleation not only determined by large-scale (Δc) but also small-scale heterogeneities

Aging and phase stability

(Michutta et al., Acta Mat. 33, 2015)

Interactions in SPP

Thank you for your attention!