

0 0

0

0 0 0

0 0

0

Yan Ma, Chang Liu, and Dierk Raabe

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0 0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

0 0 0 0

0 0

Simulation support: Fritz Körmannn

Acknowledgement: Zhiming Li, Wenjun Lu, Zhifeng Lei, Paraskevas Kontis

SPP2006, 2nd phase kick-off meeting, 13.04.2021

Interstitial doping in high-entropy alloys

- 1. Interstitials in FCC high-entropy alloys
 - Tuning deformation mechanisms through alloy design
 - Design of thermally stable bulk nanostructured iHEA
- 2. Interstitials in BCC high-entropy alloys
 - Tuning deformation mechanisms via ordered oxygen complexes
- 3. Summary

From HEA to iHEA

Tuning deformation mechanisms through alloy design (SFE-guided alloying concept)

Interstitials in FCC HEA

Tuning deformation mechanisms through alloy design

• **Carbon addition** effectively tunes the stability of the metastable FCC matrix.

- SFE is ~18 mJ/m², triggering both **TRIP and TWIP effects**.
- All strengthening mechanisms are realized in one HEA.

Interstitials in FCC HEA

Design of thermally stable bulk nanostructured iHEA

• Nano-carbides retards mobility of twin boundary.

Interstitials in FCC HEA

Interfacial nanophase design enables thermally stable nanotwins

<110>Matrix//<011>Twin//<110>M23C6//<1120>9R

13.04.2021 Lu et al, Acta Mater. 185(2020), 218

Interstitials in **BCC HEA**

Tuning deformation mechanism via ordered oxygen complexes (OOCs) in (TiZrHfNb)₉₈O₂ HEA

Fascinating impacts of interstitials on HEAs

b.c.c.

TiZrNbHfTa + B Grain refinement GB segregation Hydrogen embrittlement

b.c.c.

TiZrNb + O Solubility limit SRO/OOCs Deformation modes

