

Refractory metals improving the mechanical properties of $Al_{10}Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6$

Sebastian Haas¹, Anna Manzoni², Uwe Glatzel¹

¹ Metals and Alloys, University of Bayreuth, Germany ² Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany

Characterization of the annealed base alloy

Microstructure after annealing at 900°C for 50 h and furnace cooling:

Influence of high melting elements

Goal:

Development of a high-temperature material in the range of 600-800°C

Addition of small amounts of specific elements; always at the cost of Al

	W	Мо	Hf	Zr	Y	B
Melting point in °C ^[1]	3414	2622	2233	1854	1522	2075
Content in at.%	1	,0	0,5			
 Changes in the microstructure: Morphology of Heusler-phase Morphology of γ'-phase 			 High temperature resistance: Creep resistance Tensile strength 			

[1] Lide D. R.; CRC Handbook of Chemistry and Physics; CRC Press, Boca Raton, 2004, 85. Auflage

Morphology of the Heusler-phase

- The base-, W- and Mo-alloy can be homogenized as standard at 1220°C for 20 hours.
- The element Hf leads to eutectic reactions at the grain boundaries.

 \succ T_{hom}(Hf) = 1140°C

Atom probe tomography: MPIE Düsseldorf

erkstoffe etallische

Characterization of directionally solidified material

Bridgman Process:

In [001]-orientation directionally solidified material to reduce the influence of grain structure

Heat treatment:

- ➤ 1100 1220°C / 20 h
- Cooling down to: 900°C
 900°C / 50 h
 - Slow furnace cooling

Wire EDM:

Samples for tension- and creep-experiments

Tensile test behaviour

University of Bayreuth

Creep resistance of the modified alloys

Stress in MPa

Stress exponents:

+ Mo	Base	$+ \mathbf{W}$	+ Hf	
9,1	10,8	15,4	12,1	

- Mo-alloy:
 - Low coherency stresses
- Base alloy:
 - Detrimental needle-shaped Heusler-phase (~5%) at timedependent creep deformation

• W-alloy:

Pure two-phase microstructure

• Hf-alloy:

- High coherency stresses
- Desirable coarse Heuslerphase remaining from the ascast state

Sebastian Haas, Metals and Alloys

- Needle-shaped Heusler-phase (~5%) not detrimental at time independent, but detrimental at time dependent deformation
- Coarse Heusler-phase from as-cast state desirable
- Accumulation of Hf-atoms in the γ'-phase leads to an increase of the positive lattice misfit, the coherency stresses and an improvement of the mechanical properties

12

Heat treatment: Form, size and fraction of the Heusler-phase

 γ '-morphology as a result of varying positive lattice misfit

Goal

Al₁₀Co₂₅Cr₈Fe₁₅Ni₃₆Ti₆ using small amounts of high melting elements

Thank you very much for your attention!