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Introduction

The equiatomic CrMnFeCoNi quinary alloy is one of the most

investigated HEA system so far.

- SFE (20-25 mJ/m2) [1-2]

- Mechanical nano-twinning

A series of non-equiatomic CrMnFeCoNi HEAs with varying

elemental concentration was designed to lower the SFE [3-5].

By lowering the SFE the TWIP and TRIP effect have been

observed [6-9]
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Motivation

Very few single phase fcc HEAs have been studied to understand 

the micro-mechanisms of deformation with respect to 

microstructure and texture evolution.

A weak brass-type texture is observed in CrFeMnCoNi HEA after 

90% rolling [10].

Haase et al. reported a transition from copper-type to the brass-

type texture at 50% CR reduction [11].

Tazuddin et al. observed brass-type texture evolution without 

formation of deformation twins in CuFeMnCoNi HEA [12]
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Objective

Comprehensive understanding of the microstructure and texture 

evolution in these fcc HEAs

Investigation of the micro-mechanisms of deformation of non-

equiatomic fcc HEAs as a function of SFE, processing temperature 

and imposed strain level 

Study the role of slip, twinning and shear banding on texture 

evolution during deformation as a function of SFE and processing 

temperature
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Alloy Designation SFE (mJ/m2) Reference

Ni26Fe20Cr14Co20Mn20 HEA-1 57 Zaddach et al. [4]

Ni25Fe20Cr20Co15Mn20 HEA-2 38 Liu et al.[5]

Ni18.5Fe18.5Cr18.5Co36Mn18.5 HEA-3 10 Zaddach et al. [4]

Non-equiatomic HEAs investigated
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Cryo-rolling microstructure
IPF maps Grain boundary maps

Yellow lines: LAGBs (>2-15°)

Black lines  : HAGBs (>15°)
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All HEAs develop a heterogeneous microstructure with fine-scale shear bands 

after 90% CR. 

The texture is of brass-type both at room and cryogenic temperature.

The deformation mechanisms are dislocation slip in the early stage of rolling 

and deformation twinning at intermediate stage followed by shear banding in 

the final stage.

The intensity of the brass-type texture is related to deformation twinning and 

shear banding the activity of which is increasing with lowering the SFE. 

Summary and conclusions
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