

Thermodynamic modeling for High Entropy Alloys (HEA)

Compositionally Complex Alloy – High Entropy Alloys (CCA - HEA)

Mehdi Noori

Subgroup-meeting on Modelling and Simulation, 11.10.2018

Goals

- Alloy selection with 7 components
 - → Elements: Fe-Cr-Co-Mn-Ni-Al-C
 - → All possible binary and ternary systems
- Not sufficient experimental data for HEA/CCA

- Finding new alloys with exceptional mechanical properties
 - → Advancing from HEA to CCAs
- Development of database for CCAs
 - → 21 binary systems included
 - → 28 of 35 ternary systems included
 - → Thermodynamic modelling of AI-Co-Fe, AI-Co-Mn, AI-Mn-Ni
- Calphad prediction of precipitates (e.g. B2, κ) and phase stabilities

Fe-2%Mn-8%AI-0.2%C, cooling 10K/s from 1400 C, quenched from 870 C.

I. Zuazo et al, JOM 66 (2014) 1747-58.

Crystallographic information of Ni-V system

Phase label	Prototype	Pearson symbol	Space group	Struktur- bericht	Wyckoff positions	Configu- rations
Ni-fcc	Cu	cF4	Fm-3m (225)	A1		
Ni ₈ V	NbNi ₈	tl18	<i>14/mmm</i> (139)	-	2a, 8h, 8i	8
Ni ₃ V	TiAl ₃	t18	<i>I4/mmm</i> (139)	D0 ₂₂	2a, 2b, 4d	8
Ni ₂ V	MoPt ₂	016	<i>Immm</i> (71)	-	2a, 4i	4
σ	$Cr_{0.49}Fe_{0.51}$	tP30	P4 ₂ /mnm (136)	D8 _b	2a, 4f, 8i ₁ , 8i ₂ , 8j	32
NiV ₃	Cr ₃ Si	сР8	Pm-3n (223)	A15	2a, 6c	4
V-bcc	W	cl2	Im-3m (229)	A2		

Atomistic modelling

 Flowchart for the self-consistent loop of Kohn-Sham equations

Ab initio calculation:

- → GGA-PBE
- → MP k-point density of 0.02 Å³
- → T=0 K
- → ENCUT=500 eV
- → EDIFF=1e-6

Comparison with different databases

Development of Ni-V binary system

- Making Setup file + include all experimental for Ni-V (pop file)
- Using Parrot module of Thermo-Calc
 - → Optimize parameters
 - → Plotting phase diagrams and property diagrams

Future work

Thank you for your attention!

Thanks to DFG for financing through SPP 2006 HEA/CCA

Mehdi Noori

IWM – Institut für Werkstoffanwendungen im MaschinenbauRWTH Aachen UniversityAugustinerbach 452062 Aachen

www.iwm.rwth-aachen.de