Grain Boundary Effects in High Entropy Alloys: Insights from Atomistic Computer Simulations D. Utt, A. Stukowski, K. Albe

TECHNISCHE

UNIVERSITÄT DARMSTADT

nanocrystalline

🔺 n-Ni

▶ Growth factor: d_f/d_o

- Growth factor: d_f/d_o
- HEA grain growth factor very small

- Growth factor: d_f/d_0
- HEA grain growth factor very small
- Hall-Petch law

 Zener pinning on carbides or oxides

Zou et al., Nano Lett., 2017, 17 (3) Praveen et al., J. Alloy. Comp., 2016, 662

- Zener pinning on carbides or oxides
- Reduced GB mobility caused by solute drag

Liu et al., Scr. Mater., 2013, 68

- Zener pinning on carbides or oxides
- Reduced GB mobility caused by solute drag
- Reduced driving force due to GB segregation

Zhou et al., Scr. Mater., 2016, 124

- Zener pinning on carbides or oxides
- Reduced GB mobility caused by solute drag
- Reduced driving force due to GB segregation
- Local lattice distortions

Atomistic simulations using LAMMPS

www.lammps.sandia.gov

- Atomistic simulations using LAMMPS
- Equimolar FCC CuNiCoFe HEA
 - Random configuration (Rand. ...)
 - Chemical equilibration using hybrid VC-SGC MC/MD

Sadigh et al., Phys. Rev. B, 2012, 85 Koch et al., JAP, 2017, 122

- Atomistic simulations using LAMMPS
- Equimolar FCC CuNiCoFe HEA
 - Random configuration (Rand. ...)
 - Chemical equilibration using hybrid VC-SGC MC/MD
- EAM interatomic potential

Zhou et al., Phys. Rev. B, 2004, 69 Koch et al., JAP, 2017, 122

- Atomistic simulations using LAMMPS
- Equimolar FCC CuNiCoFe HEA
 - Random configuration (Rand. ...)
 - Chemical equilibration using hybrid VC-SGC MC/MD
- EAM interatomic potential
- Compare to pure Cu, Ni, and 'average atom'

- Atomistic simulations using LAMMPS
- Equimolar FCC CuNiCoFe HEA
 - Random configuration (Rand. ...)
 - Chemical equilibration using hybrid VC-SGC MC/MD
- EAM interatomic potential
- Compare to pure Cu, Ni, and 'average atom'

Cu Ni Co Fe C Average Atom (Avg.-Atom)

Varvenne et al., Phys. Rev. B, 2016, 93

What is the magnitude of the intrinsic lattice distortions?

Intrinsic lattice distortions are measurable at OK, but become negligible at higher temperatures.

Is there a structural difference for the GBs in the different materials?

What are the GB mobilities for the different materials under driven conditions?

Janssens et al., Nat. Mater., 2006, 5

Synthetic driving pressure:

$$P = \frac{\Delta e}{\Omega}$$

GB Mobility:

$$M = \frac{V}{P}$$
$$M(T) = M^{\infty} \exp\left(\frac{-Q_{\rm m}}{k_{\rm B}T}\right)$$

Janssens et al., Nat. Mater., 2006, 5

Synthetic driving pressure:

$$P = \frac{\Delta e}{\Omega}$$

GB Mobility:

$$M = \frac{v}{P}$$
$$M(T) = M^{\infty} \exp\left(\frac{-Q_{\rm m}}{R_{\rm B}T}\right)$$

Janssens et al., Nat. Mater., 2006, 5

Σ 11 (332) (110) STGB Mobility

Σ 11 (332) (110) STGB Mobility

How is the mobility of this STGB altered by segregation?

How do these findings transfer to large scale samples containing general GBs?

GB velocity:

 $v = M \cdot F$

GB velocity:

 $v = M \cdot F$

Curvature driven GG:

$$F = \frac{2\gamma}{r}$$

GB velocity:

$$v = M \cdot F$$

Curvature driven GG:

 $F = \bigvee_{r}^{\gamma}$

 Lattice distortions in the CuNiCoFe HEA are influential at OK, but become negligible above 50 K.

- Lattice distortions in the CuNiCoFe HEA are influential at OK, but become negligible above 50 K.
- Monoatomic samples show a perfect GB structure, localized deviations in the HEA.

- Lattice distortions in the CuNiCoFe HEA are influential at OK, but become negligible above 50 K.
- Monoatomic samples show a perfect GB structure, localized deviations in the HEA.
- Avg.-atom and random HEA show almost identical GB mobilities, indicating that the local chemical fluctuations do not hinder GB migration.

- Lattice distortions in the CuNiCoFe HEA are influential at o K, but become negligible above 50 K.
- Monoatomic samples show a perfect GB structure, localized deviations in the HEA.
- Avg.-atom and random HEA show almost identical GB mobilities, indicating that the local chemical fluctuations do not hinder GB migration.
- Segregation strongly inhibits grain growth.

'Compositionally Complex Alloys – High Entropy Alloys'

SPP 2006; STU 611/2-1

Properties of the avg.-atom

		Rand.	Avg.
		CuNiCoFe	Atom
ao	(Å)	3.57	3.57
E _{Coh}	(eV)	-4.14	-4.14
C ₁₁	(GPa)	172	170
C ₁₂	(GPa)	124	120
C ₄₄	(GPa)	101	100
α	(×10 ⁻⁶ K ⁻¹)	21	21
T _{Melt}	(К)	1550	1425
$\gamma_{\rm SF}$	(mJ m ⁻²)	28.5	27.0
$\gamma_{\sf USF}$	(J m ⁻²)	126.9	129.7

Σ 11 (332) (110) STGB Position

