DFG Project 314231017

11.10.2018

Diffusion Simulations in CoCrFeMnNi

<u>K. Abrahams¹</u>, D. Gaertner², M. Stratmann¹, O. Shchyglo¹, S.V. Divinski², I. Steinbach¹

¹Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany ²Institute of Materials Physics, University of Münster, Germany

ADVANCED MATERIALS SIMULATION

RUHR UNIVERSITÄT BOCHUM

• Big question: Sluggish diffusion in HEAs ???

- Big question: Sluggish diffusion in HEAs ???
- Tracer diffusion measurements and simulations in equiatomic CoCrFeMnNi

Tracer diffusion

Tracer: radioactive isotopes

- Big question: Sluggish diffusion in HEAs ???
- Tracer diffusion measurements and simulations in equiatomic CoCrFeMnNi

- Big question: Sluggish diffusion in HEAs ???
- Tracer diffusion measurements and simulations in equiatomic CoCrFeMnNi
- Diffusion Couple measurements and simulations

Multicomponent diffusion model: DICTRA model

- \rightarrow Physical meaning ?
- \rightarrow Applicability in high concentrated multicomponent alloys?
- → Simplifications (e.g. No kinetic cross terms, reference elements)

Possible reasons:

- Thermodynamic database?
- Kinetic database?
- Diffusion model?

RU

Possible reasons

- Thermodynamic database?
- Kinetic database?
- Diffusion model?

... and then?

New from the simulation side: Generalized diffusion model

 $|(\cdot \wedge |$

• Vacancies in equilibrium

RU

Pair-diffusion model

Derivation:

- Mass conservation equation: $\frac{\partial x_i}{\partial t} + \nabla J_i + \nabla (x_i v) = 0$
- Velocity: $\nabla v = -\sum_{j=1}^{n} \nabla J_j V_j$
- Intrinsic flux: $J_i = -M_i x_i \nabla \mu_i$

10 AMS

$$\frac{\partial x_i}{\partial t} = \frac{1}{2} \nabla \sum_{\substack{j=1\\j\neq i}}^n x_i x_j M_{ij} \nabla \widetilde{\mu}_{ij}$$

$$\widetilde{\mu}_{ij} = \mu_i - \mu_j$$

$$M_{ij} = x_i M_j + x_j M_i + \sum_{\substack{k=1 \ k \neq i \\ k \neq i}}^n x_k (M_i + M_j - M_k)$$

8

RUB

Possible reasons

- Thermodynamic database?
- Kinetic database?

... and then?

New from the experimental side: **Combined radiotracer and interdiffusion** experiment

 \rightarrow Composition dependent atomic mobilities from one experiment!

[1] I.V. Belova, N.S. Kulkarni, Y.H. Sohn, G.E. Murch: Simultaneous measurement of tracer and interdiffusion coefficients: an isotopic phenomenological diffusion formalism for the binary alloy (2013)

[2] I.V. Belova, N.S. Kulkarni, Y.H. Sohn, G.E. Murch: Simultaneous tracer diffusion and interdiffusion in a sandwich-type configuration to provide the composition dependence of the tracer diffusion coefficients (2014)

[3] I.V. Belova, Y.H. Sohn, G.E. Murch: Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys (2015)

Combined radiotracer and interdiffusion experiment

 $|\odot \land MS$ **RU**B 12

Composition dependent atomic mobilities!!!

[3] I.V. Belova, Y.H. Sohn, G.E. Murch: Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys (2015)

Comparison Atomic Mobilities

14

Interdiffusion Co and Ni

Interdiffusion Cr, Fe, Mn

Tracer diffusion profiles

Summary and Outlook

- Accurate kinetics are important!
- Further testing of the method to determine composition dependent atomic mobilities
- Extend diffusion model to more than one sublattice and to intersticial elements
- Assessment of atomic mobility data for the new model
- Automate the assessment of atomic mobility data

