

High-temperature strength of L1₂-hardened Compositionally Complex Alloys

Sebastian Haas¹, Anna Manzoni², Uwe Glatzel¹

¹ Metals and Alloys, University Bayreuth, Germany ² Helmholtz-Zentrum Berlin für Materialien und Energie

- Introduction:
 - ➢ High Entropy Alloys (HEA)
 - Compositionally Complex Alloys (CCA)
- Base alloy $Al_{10}Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6$ (in at.%)
- Modification by hafnium and molybdenum
- Mechanical characterization
- Discussion
- Summary

Introduction

Increase of number of publications in the branche "high entropy alloys"

High entropy alloys

- > At least 5 components
- Near equiatomic composition

 $S_{conf} = -R \cdot \sum_{i=1}^{n} (c_i \cdot \ln c_i)$

- High strength
- High hardness

- Thermal stability
- Sluggish diffusion kinetics
- Oxidation and corrosion resistance

B. Cantor et al. "Microstructural development in equiatomic multicomponent alloys" Mater. Sci. Eng. A (375-377) J.W. Yeh et al. "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes" Adv. Eng. Mater. (6)

Introduction

High entropy alloys

- Insufficient properties
- No solid-solution stabilization

Compositionally Complex Alloys Multiphase microstructure as the prominent and promising feature

AlCoCrCuFeNi

+ Ni

- More than 6 phases
- Phases with bcc-structure
- Brittle mechanical behavior

- Cu

Al₁₀Co₂₅Cr₈Fe₁₅Ni₃₆Ti₆

- 3 phases left
- Fcc-structured matrix
- Good strength-ductility relation

+Ti

Base alloy

C1-phase

Annealing:

- 900 °C / 50 h
- Ni-, Al-, Ti-rich
- Edge length ~ 450 nm
- Volume content ~ 40 %

Following talk by Dr. Anna Manzoni

Material & Methods

Tensile tests 1) Base alloy

University Bayreuth

Sebastian Haas, Metals and Alloys

Tensile tests 1) Base alloy

- High tensile strength
- Good strain to failure
- High reproducibility
- Directional solidified grains in direction of load
- Decrease of needle-like C1phase
- Decrease of γ´-particle size

	~23 °C	600 °C	700 °C	800 °C	900 °C
Ultimate tensile strength (in MPa)	1197 ± 6	1006 ± 16	840 ± 1	575 ± 7	319 ± 1
Strain to failure (in %)	27 ± 1	12 ± 2	17 ± 5	20 ± 4	34 ± 1

Tensile tests 2) Addition of Hf

- High tensile strength
- Good strain to failure
- High reproducibility
- Sharp-edged γ´-particles

Spherical shape of C1-phase

	~23 °C	600 °C	700 °C	800 °C	900 °C
Ultimate tensile strength (in MPa)	1107 ± 43	1050 ± 7	904 ± 12	612 ± 5	344 ± 5
Strain to failure (in %)	20 ± 1	12 ± 1	16 ± 1	24 ± 1	34 ± 2

Discussion

1200

1000

800

600

400

200

0

100

200

300

Ultimate tensile strength in MPa

Detrimental impact of increasing needle-like C1-phase dominates bigger γ´-particles. Spherical C1-phase improves mechanical properties compared to needle-like geometry.

400

500

Temperature in °C

600

700

800

900

Base alloy + Hf

Base alloy + Mo

Base alloy

Is a spherical form of C1-phase beneficial or less detrimental?

Addition of Tungsten: $Al_9Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6W_1$

Mechanical characterization will provide more information about the role of C1-phase

 $Al_{10}Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6$: γ' - and C1-phase change due to ...

- Addition of elements in small amounts
- Variation of annealing treatment

Directional solidification increases the ultimate tensile strength: 72 % at 23 °C 80 % at 600 °C 50 % at 700 °C Less needle-like C1phase increases the ultimate tensile strength: 58 % at 23 °C 38 % at 600 °C 19 % at 700 °C Hf-addition (spherical C1) increases the ultimate tensile strength: 46 % at 23 °C 31 % at 600 °C 29 % at 700 °C

C1-phase plays the important role for the mechanical behavior ➤ Gain more information about thermal & chemical stability

Thank you for your attention!