

Deformation Mechanisms in BCC High Entropy Alloys at Cryogenic Temperatures

Jan Sas¹, K-P. Weiss¹, T. Hanemann², A. Kauffmann², A. Srinivasan², M. Heilmaier², H. Chen², J. Freudenberger³

A contribution to the "HEA branch" of the SPP.

1) Institute for Technical Physics (ITEP), 2) Institute for Applied Materials (IAM–WK), 3) Leibniz Institute for Solid State and Materials Research Dresden

Cryogenic material laboratory within ITEP

Necessity to characterize materials at operational temperatures → RT – 4.2 K

- Mechanical properties (tensile, fracture, fatigue...)
- Electro-mechanical investigations
- Thermal conductivity / expansion
- In-house development and production of appropriate sensors
- Optical Emission Spectrometer Analysis
- Additional investigations like surface roughness, optical, SEM & X-ray diffraction analysis
- Advantage of combination of test methods in one laboratory with expertise of about 30 years

Available mechanical tests at CryoMaK facilities

CryoMaK facilities for testing mechanical properties at low temperatures

Test facility	Maximal force +/- kN	Temperature K	Test type	Standards *
MTS25	25	$RT \rightarrow 7$	Standard tests	DIN EN ISO 6892- 1
MTS50	50	$RT \rightarrow 77$	Fatigue tests	ASTM E8 DIN ISO 15579
MTS100	100	$RT \rightarrow 4$	toughness tests	ASTM E 1450 DIN ISO 19819 JIS Z 2277 ASTM E 466 JIS Z 2283 ASTM E 606 ASTM E 647 JIS Z 2284 ASTM E1820
ATLAS	650	$RT \rightarrow 4.2$	components Non-standard	
TORSION	160 – axial 1000 Nm – torsion	$RT \to 4.2$	tests	
PHOENIX	+/- 100	$RT \rightarrow 4.2$	Standard tests Non-standard tests	
GALDABINY INSTRON CEAST 9350	450J 757J	RT → 77 RT	Instrumented Impact Tests	ISO 148 ASTM E23 JIS Z 2202
INNOVATEST NEXUS 4302	30 Kgf	RT		ISO 6507-2 ASTM E92

* These are only examples of standards. We perform tests according to a variety of other standards as well.

Testfacility CryoMaK

MTS25 & 50 axial \pm 25 kN und \pm 50 kN

 $\begin{array}{ll} \text{MTS 100kN} \\ \text{axial} & \pm 100 \text{ kN} \end{array}$

Production of HfNbTaTiZr

for reproducible materials testing and characterization

Preliminary work

Peculiarities of deformation in HfNbTaTiZr

- initial work on homogenized material only
- Iocalized deformation for large strains at room temperature
- Iocalization partially due to deformation twinning is active at room temperature
- twinning modes can only partially be attributed to the most common BCC twin system

(but only when orientation relation is applied twice)

Karlsruhe Institute of Technology

Current work

Peculiarities of deformation HfNbTaTiZr

- successful manufacturing of tensile and compression test samples from single, recrystallized batch
- high strength but low workhardening during tensile loading

Karlsruhe Institute of Technology

Current work

Peculiarities of deformation HfNbTaTiZr

- no obvious indications for twins
- texture evolution according to the expected slip systems (slip direction)

Current work

- Iimited localized deformation within uniform part of the samples at room temperature
- more pronounced in the necking region due to higher strain
- planned experiments:
 - increasing applied strain by compression testing
 - Iowering temperature to facilitate deformation twinning

Summary

- production for reproducible materials
- initial work on homogenized material
- successful manufacturing of tensile and compression test
- planned experiments:
 - increasing applied strain by compression testing
 - lowering temperature to facilitate deformation twinning
- influence of microstructure parameters (grain size, twins ...)

