Atomistic Simulation in the Model HEA: CuNiCoFe

D. Utt, A. Stukowski, K. Albe

DFG Deutsche Forschungsgemeinschaft

 Nanocrystalline metals show outstanding mechanical properties.

Carlton and Ferreira, Acta Materialia 55 (11), 2007

- Nanocrystalline metals show outstanding mechanical properties.
- Small grain sizes are not stable in pure materials.

Gertsman and Birringer, Scripta Metallurgica et Materialia 30 (5), 1994

 Secondary elements can be added to stabilize the microstructure.

- Secondary elements can be added to stabilize the microstructure.
- 1. Kinetically:
 - Solute drag mechanism
 - Zener pinning

Cahn, Acta Metallurgica 10 (9), 1962 Nes et al., Acta Metallurgica 33 (1), 1985 Botcharova et al., Acta Materialia 51 (12), 2006

- Secondary elements can be added to stabilize the microstructure.
- 1. Kinetically
- 2. Thermodynamically:
 - Segregation reduces GB energy to 0.
 - Removes driving force for grain growth.

Weissmüller, Nanostructured Materials, 3 (1-6), 1993 Kirchheim, Acta Materialia, 50 (2), 2002

• Slower grain growth in HEAs?

- Slower grain growth in HEAs?
 - Local disorder

- Slower grain growth in HEAs?
 - Local disorder
 - Segregation effects

- Slower grain growth in HEAs?
 - Local disorder
 - Segregation effects
- Observed in microcrystalline FeCoNiCrMn
 - growth exponent = 3

Liu et al., Scripta Materialia 68 (7), 2013

- Slower grain growth in HEAs?
 - Local disorder
 - Segregation effects
- Observed in microcrystalline FeCoNiCrMn
- Exceptional resistance against grain growth in CoCrFeNi
 - Zener pinning at precipitates

Praveen et al., Journal of Alloys and Compounds 662, 2016

What is the origin of the reduced grain growth in HEAs? Understanding kinetic and thermodynamic aspects.

Molecular Dynamics Study

- Compare grain growth:
 - Cu
 - CuNiCoFe
 - Average atom

Selectively study effects of Ο

local disorder

Varvenne et al., Physical Review B 93 (10), 2016

Molecular Dynamics Study

- Compare grain growth
- Average atom
 - Artificial element Ο
 - Behaves like CuNiCoFe Ο alloy
 - Leads to average matrix Ο without local disorder

Co

Cu

Ni

Fe

Molecular Dynamics Study

- Compare grain growth
- Average atom
- Atoms will be color coded

Stukowski, Modelling and Simulation in Materials Science and Engineering 18 (1) 2009

t = 0.33 t_{final}

FCC HCP BCC Other

15.02.2018 | Materials Modelling | TU Darmstadt | Prof. Albe | 17

GB Mobility

- Σ=11 (332) symmetrical tilt GB
- Bicrystalline simulation setup

GB Mobility

- Σ=11 (332) symmetrical tilt GB
- Bicrystalline simulation setup
- Apply artificial driving force to GB

 Fixed FCC lattice considering only nearest neighbor interactions

Chookajorn and Schuh, Physical Review B 89 (6), 2014

- Fixed FCC lattice considering only nearest neighbor interactions
- Every atom has two properties
 - Atom type (color)
 - Grain number (number)

Chookajorn and Schuh, Physical Review B 89 (6), 2014

- Fixed FCC lattice considering only nearest neighbor interactions
- Every atom has two properties
 - Atom type (color)
 - Grain number (number)
- Periodic boundary conditions

Chookajorn and Schuh, Physical Review B 89 (6), 2014

- Each step an atom can swap:
 - Atom type

- Each step an atom can swap:
 - Atom type
- Each step an atom change:
 - Grain number

• Site energy depends on direct neighbors.

- Bond energy varies with direct neighbors.
- Parameters space:
 - Binary mixing enthalpies
 - Binary segregation enthalpies
 - Unary GB energies (γ_0)

- Set all parameters
- Varied only GB energies (γ)
- Simulated annealing

- Set all parameters
- Varied only GB energies (γ)
- Simulated annealing
- Atoms will be color coded
 - Type
 - Grain boundary
 - On boundary

Grain interieur

Atom Types

Grain Boundaries

$\gamma = 5.5 \gamma_0$ Final Configuration

 $\gamma=8\gamma_0$

Grain Boundaries

15.02.2018 | Materials Modelling | TU Darmstadt | Prof. Albe | 39

 $\gamma = 9.5\gamma_0$

Grain Boundaries

$\gamma = 9.5 \gamma_0$ Final Configuration

Result

Segregation can strongly influence the final grain structure.

HEA shows strongly reduced grain growth. It cannot be explained by local atomic disorder.

15.02.2018 | Materials Modelling | TU Darmstadt | Prof. Albe | 44

Conclusion

Segregation effects need to be explored further.

Acknowledgement

Deutsche

SPP 2006: Legierungen mit komplexer Zusammensetzung -Hochentropielegierungen (CCA -Forschungsgemeinschaft HEA)

Calculations for this research were conducted on the Lichtenberg high performance computer of the TU Darmstadt

Appendix Potentiale

$$\phi(r) = \frac{A \exp[-\alpha(r/r_e - 1)]}{1 + (r/r_e - \kappa)^{20}} - \frac{B \exp[-\beta(r/r_e - 1)]}{1 + (r/r_e - \lambda)^{20}},$$
(A3)

where r_e is the equilibrium spacing between nearest neighbors, A, B, α , and β are four adjustable parameters, and κ and λ are two additional parameters for the cutoff. The electron density function is taken with the same form as the attractive term in the pair potential with the same values of β and λ , i.e.,

$$f(r) = \frac{f_e \exp[-\beta(r/r_e - 1)]}{1 + (r/r_e - \lambda)^{20}}.$$
 (A4)

The pair potential between different species a and b is then constructed as

$$\phi^{ab}(r) = \frac{1}{2} \left[\frac{f^b(r)}{f^a(r)} \phi^{aa}(r) + \frac{f^a(r)}{f^b(r)} \phi^{bb}(r) \right].$$
(A5)

Embedding energy functions that work well over a wide range of electron density require that three equations be used

144113-8

MISFIT-ENERGY-INCREASING DISLOCATIONS IN ...

to separately fit three different electron density ranges. For a smooth variation of the embedding energy, these equations are required to match values and slopes at their junctions. These equations are

$$\begin{split} F(\rho) &= \sum_{i=0}^{3} F_{ni} \left(\frac{\rho}{\rho_{n}} - 1 \right)^{i}, \quad \rho < \rho_{n}, \quad \rho_{n} = 0.85 \rho_{e}, \end{split} \tag{A6} \\ F(\rho) &= \sum_{i=0}^{3} F_{i} \left(\frac{\rho}{\rho_{e}} - 1 \right)^{i}, \quad \rho_{n} \leqslant \rho < \rho_{0}, \quad \rho_{0} = 1.15 \rho_{e}, \end{aligned} \tag{A6} \\ F(\rho) &= F_{e} \left[1 - \ln \left(\frac{\rho}{\rho_{s}} \right)^{\eta} \right] \left(\frac{\rho}{\rho_{s}} \right)^{\eta}, \quad \rho_{0} \leqslant \rho. \tag{A8}$$

PHYSICAL REVIEW B 69, 144113 (2004)

$$\langle E_0 \rangle = \sum_{i,X} c_X \langle F^X(\rho_i) \rangle + \frac{1}{2} \sum_{\substack{i,j \neq i \\ X,Y}} V_{ij}^{XY} c_X c_Y, \qquad (3)$$

where $\langle s_i^X \rangle = c_X$. We then perform a Taylor expansion $\langle F^X(\rho_i) \rangle = \langle F^X(\bar{\rho}_i) \rangle + O(\rho_i - \bar{\rho}_i)^2$ around the average electron density $\bar{\rho}_i$, in which the first order term vanishes since $\langle (\rho_i - \bar{\rho}_i) \rangle = 0$. Neglecting second and higher-order terms [34], which is the *only* approximation, the average energy is

$$\langle E_0 \rangle = \sum_i F^A(\bar{\rho}_i) + \frac{1}{2} \sum_{i, j \neq i} V^{AA}_{ij},$$
 (4)

with
$$F^{A}(\bar{\rho}_{i}) = \sum_{X} c_{X} F^{X}(\bar{\rho}_{i}),$$

 $V_{ij}^{AA} = \sum_{X,Y} c_{X} c_{Y} V_{ij}^{XY}, \quad \bar{\rho}_{i} = \sum_{j \neq i} \sum_{X} c_{X} \rho_{ij}^{X},$ (5)

Varvenne et al., Physical Review B, 93(104201), 2016

Zhou et al., Physical Review B, 69(144113), 2004

Appendix Average Atom

	CuNiCoFe	Average Atom
a ₀ (A)	3.572	3.570
E _{Coh} (eV)	-4.141	-4.137
C ₁₁ (GPa)	172	170
C ₄₄ (GPa)	100	101
C ₁₂ (GPa)	124	120
γ _{SF} (mJ/m²)	10.6	26.9
γ _{USF} (mJ/m²)	44.8	129.4

Appendix Nanocrystal

Results

Appendix GB velocity

Appendix

Bond energy	Full form	Simplified form	
EcAA	$E_{\rm c}^{\rm AA}$	E_c^{AA}	
E_c^{BB}	E_{c}^{BB}	E_c^{AA}	
E_c^{AB}	$\left(\frac{E_{\rm c}^{\rm AA} + E_{\rm c}^{\rm BB}}{2}\right) + \omega_{\rm c}$	$E_{\rm c}^{\rm AA} + \omega_{\rm c}$	$\Delta H^{\rm mix} = z\omega_{\rm c}X(1-X),$
$E_{\rm gb}^{\rm AA}$	$E_{\rm c}^{\rm AA} + \frac{2\Omega^{\rm A}\gamma_0^{\rm A}}{zt}$	$E_{c}^{AA} + \frac{2\Omega^{A}\gamma_{0}^{A}}{zt}$	
$E_{ m gb}^{ m BB}$	$E_c^{\rm BB} + \frac{2\Omega^{\rm B}\gamma_0^{\rm B}}{zt}$	$E_{\rm c}^{\rm AA} + \frac{2\Omega^{\rm A}\gamma_0^{\rm A}}{zt}$	
$E_{ m gb}^{ m AB}$	$\left(\frac{E_{\rm c}^{\rm AA} + E_{\rm c}^{\rm BB}}{2}\right) + \omega_{\rm gb} + \frac{1}{zt} \left(\Omega^{\rm A} \gamma_0^{\rm A} + \Omega^{\rm B} \gamma_0^{\rm B}\right)$	$E_{\rm c}^{\rm AA} + \omega_{\rm gb} + \frac{2\Omega^{\rm A}\gamma_0^{\rm A}}{zt}$	$\Delta H^{\text{seg}} = z \left[\omega_{\text{c}} - \frac{\omega_{\text{gb}}}{2} - \frac{1}{2zt} \left(\Omega^{\text{B}} \gamma_{0}^{\text{B}} - \Omega^{\text{A}} \gamma_{0}^{\text{A}} \right) \right]$

Table 2.1: Bond energies in a polycrystalline binary alloy in full and simplified forms.

T. Chookajorn PhD Thesis, Massachusetts Institute of Technology, 2013

Results

