DFG Project 314231017

15.02.2018

Diffusion Simulations in High-Entropy Alloys

<u>K. Abrahams¹</u>, D. Gaertner², M. Stratmann¹, O. Shchyglo¹, S.V. Divinski², I. Steinbach¹

> ¹Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-University Bochum, Universitätsstraße 150, 44780 Bochum, Germany ²Institute of Materials Physics, University of Münster, Germany

ICAMS

INTERDISCIPLINARY CENTRE FOR ADVANCED MATERIALS SIMULATION

Why diffusion simulations ?

- Homogenization heat treatment
- Important for microstructural evolution
 - → Nucleation and phase growth sensitive to local concentration
 - \rightarrow Phase stability
- Understand diffusion mechanism
 - \rightarrow dilute limit \leftrightarrow high concentrated alloy
 - ightarrow coupling of thermodynamic and kinetics
 - \rightarrow influence of thermodynamic/kinetic cross terms
- Validate databases
 - → kinetic databases (tracer diffusion experiments, interdiffusion experiments)
 - → thermodynamic database (interdiffusion experiment)

Diffusion Simulations: State of the art

- Multicomponent diffusion model: DICTRA model
 - \rightarrow applicability in high concentrated multicomponent alloys
 - \rightarrow simplifications (e.g. No kinetic cross terms, reference elements)
 - \rightarrow kinetic databases fitted to this model

No combination with self-diffusion model

New simulation methods

New simulation methods

Faster diffusion on GBs

Example CoCrFeMnNi

Annealing time: 48 h Annealing temperature 1373 K Polycrystalline material

Example CoCrFeMnNi: Interdiffusion

Co₂₅CrFeMn Co₁₅CrFeMn Ni₁₅ Ni₂₅

200

Example CoCrFeMnNi: Tracer Profiles

Co₂₅CrFeMn Co₁₅CrFeMn Ni₁₅ Ni₂₅

9

Co: Influence of single diffusion models

 \rightarrow Influence of interdiffusion on the tracer profile is small

 \rightarrow Interdiffusion leads to a shift of the tracer profile

Comparison of self-diffusion coefficients

- Deviations of kinetic databases from experiments in concentrated alloys
 - \rightarrow use experimentally measured diffusion coefficients
- Effect of interdiffusion on the tracer profile is small
 - → Skip interdiffusion and only use self-diffusion

Example CoCrFeMnNi: Only self-diffusion, fixed overall concen

Co₂₅CrFeMn Ni₁₅ Co₁₅CrFeMn Ni₂₅

Example CoCrFeMnNi: Simulation results Co

Summary and Outlook

- Diffusion models (not limited in number of components):
 - Interdiffusion
 - Self-diffusion
 - Faster diffusion on grain boundaries
- \rightarrow Investigate their influence on measured profiles
- More theoretical:
 - Understand diffusion mechanism in concentrated multicomponent alloys
 - → Diffusion model
 - Validate influence of kinetic cross terms
- Use theoretical knowledge:
 - Mobility database
 - Use diffusion experiments to check thermodynamic databases
- Use diffusion information for nucleation and growth of compound phases

