High entropy alloys (HEAs) have emerged as a promising class of equiatomic or near equiatomic multicomponent alloys, which garner fundamental curiosities and interest in high temperature applications. Understanding diffusion kinetics of HEAs is critical to assess their phase stability and deformation behaviour, particularly at elevated temperatures. For the first time, bulk tracer diffusion coefficients of Co, Cr, Fe and Mn are determined in polycrystalline CoCrFeNi and CoCrFeMnNi HEAs using the radiotracer method in the temperature interval of 1073–1373 K. Material homogeneity and the absence of any phase decomposition in CoCrFeNi and CoCrFeMnNi HEAs were established by electron microscopy and atom probe tomography investigations.

Both bulk and grain boundary diffusion contributions to penetration profiles are observed for diffusion of Co, Cr, Fe and Mn tracers in both HEAs. The temperature dependencies of bulk diffusion for all tracers show Arrhenius behaviour. The corresponding activation energies (Q) and the logarithm of pre-exponential factors (D₀) show a linear relationship, thus following the “compensation rule”. An increase of the configurational entropy leads to reduced diffusion rates only when a homologous temperature scale is used for comparison. The increase of activation energy barrier and lower frequency factors both contribute to the decreased diffusion rates. A cross-over temperature (Tc = 1020 K) is observed for Co diffusion (on slight extrapolation of Arrhenius plot) in CoCrFeNi and CoCrFeMnNi HEAs, while Cr and Fe exhibit almost parallel Arrhenius lines. Above Tc, the Co diffusivity is higher in CoCrFeNi than in CoCrFeMnNi, which suggests that diffusion in HEAs need not be assumed to retard with an increasing number of elements. The existence of a cross-over temperature correlates with the change in binding energy (or enthalpy) of the constituents from CoCrFeNi to CoCrFeMnNi.

© 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
been scarce and largely limited to the application of an interdiffusion (couple) technique. Table 1 enlists all the literature reports available so far, to the best of our knowledge, in a chronological order, on diffusion in HEAs along with the alloy studied, methodology adopted and important conclusions derived.

The interdiffusion measurements utilizing a diffusion couple technique seem to confirm the original paradigm of sluggish diffusion in HEAs [8,9,11], while the only available direct tracer diffusion results hint towards a non-sluggish atomic transport [12,15]. There is lack of consensus yet on the factors responsible for the anticipated decelerated diffusivities. Increased activation barriers [8], correlation effects [9,10], a combination of energy and entropic terms [12] and crystallographic structure [16] have been found to influence the diffusion rates in HEAs. In addition, the diffusion kinetics of only three HEA systems have been analyzed so far. Despite the vast compositional space of HEAs, true single phase HEAs are very few [7], which makes reliable diffusion measurements difficult.

In our recent work [12], Ni tracer diffusion in polycrystalline CoCrFeNi and CoCrFeMnNi HEAs was measured for the first time using the radiotracer technique, which is the most direct and reliable technique for bulk diffusion measurements. Two contributions to the concentration profiles were unambiguously observed and they were identified as bulk and grain boundary diffusion paths. A detailed analysis of bulk tracer diffusion of Ni showed a certain deceleration of the diffusion rates in HEAs compared to those in pure metals, binary or ternary alloys only when the diffusion rates were compared at the same homologous temperatures, T/Tm (Tm is the melting point of the corresponding compound). A comparison at a given absolute temperature T substantiates an increase of the Ni diffusion rate with an increase of the number of principal elements when going from CoCrFeNi to CoCrFeMnNi alloy. In addition, a cross-over temperature was observed for Ni diffusion in HEAs, above which CoCrFeMnNi exhibited higher Ni diffusivity than CoCrFeNi. Thus it was concluded that diffusion in HEAs cannot be a-priori considered as sluggish and configurational entropy is not alone responsible for the reduced diffusion rates if the homologous temperature scale is used for comparison.

The obvious question that arises is whether this behaviour holds true for bulk diffusion of other elements or not? In this work, the bulk tracer diffusivities of all the remaining constituents (Co, Cr, Fe and Mn) in CoCrFeNi and CoCrFeMnNi HEAs are measured using the radiotracer technique. The inferences drawn are critically compared to the conclusions derived from the Ni tracer diffusion results in Ref. [12] and the premise of sluggish diffusion in HEAs is analyzed.

2. Experimental details

Metal pieces (99.9% pure) of Co, Cr, Fe, Mn and Ni were added together in equiatomic proportions to produce CoCrFeNi and CoCrFeMnNi HEAs by vacuum arc melting followed by homogenization at 1473 K for 50 h. The details of alloy preparation and structural characterization using both X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) are given in Ref. [12]. Local electrode atom probe tomography (LEAP 4000X HR) provided by CAMECA instruments was used to investigate the absence of atomic scale phase separation or decomposition. A FEI Helios Nanolab 660 dual beam focussed ion beam has been employed to prepare atom probe tips following the procedures described in Refs. [17,18]. The atom probe tomography (APT) measurements were performed with the

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Exp/Theor</th>
<th>Technique/Methodology used</th>
<th>Important results and conclusions</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-Cr-Fe-Ni</td>
<td>Exp</td>
<td>Interdiffusion experiment with Dayanand-Sohn analysis</td>
<td>1. Sluggish diffusion character of HEAs 2. Correlation effects play more important role than activation energies in slow diffusion</td>
<td>[9]</td>
</tr>
<tr>
<td>Al-Co-Cr-Fe-Ni</td>
<td>Exp</td>
<td>Interdiffusion experiment with Darken manning formalism for analysis</td>
<td>1. Results from random alloy solutions in good agreement with the experimental results 2. Correlation effects alone are not sufficient to explain sluggish diffusion of all components in HEAs</td>
<td>[11]</td>
</tr>
<tr>
<td>CoCrFeNi and CoCrFeMnNi</td>
<td>Exp</td>
<td>Radiotracer method to determine Ni bulk diffusivity in HEAs</td>
<td>1. Both frequency factor and activation energy are important for diffusion in HEAs 2. Diffusion in HEAs should not be assumed as “sluggish” 1. Correlation effects are highest for fastest diffusing species (Mn in CoCrFeNiMn) and do not affect the slowest moving element (Ni) 2. Correlation effects alone are not sufficient to explain sluggish diffusion of all components in HEAs</td>
<td>[12]</td>
</tr>
<tr>
<td>CoCrFeMn0.5Ni</td>
<td>Theor</td>
<td>Analysis of interdiffusion results for multicomponent alloys by MAA light approach, with application to experimental results presented in Ref. [8]</td>
<td>1. Non-sluggish nature of GB diffusion in HEAs</td>
<td>[13]</td>
</tr>
<tr>
<td>CoCrFeNi and CoCrFeMnNi</td>
<td>Exp</td>
<td>Radiotracer method to determine Ni grain boundary diffusivity in HEAs</td>
<td>1. Very similar self-diffusion coefficients for all components</td>
<td>[14]</td>
</tr>
</tbody>
</table>

a Holdsworth and Elliott.

b Moleko, Allnatt and Allnatt.
tips maintained at 60 K applying laser pulses at 250 kHz frequency and 20 pJ laser pulse energy. The IVAS 3.6.10 software has been used for data reconstruction and analysis.

The radioactive isotopes used as tracers for diffusion measurements in this work are:

- 57Co: half-life of 271.7 days, 122 keV γ decays
- 51Cr: half-life of 27.7 days, 320 keV γ decays
- 54Mn: half-life of 312 days, 834 keV γ decays
- 59Fe: half-life of 44.6 days, 1095 keV, γ decays

A highly diluted acidic solution of these isotopes was deposited on the surface of disc-shaped (8 mm diameter and 1 mm thickness) samples and left for drying. This was preceded by mechanical polishing of the samples to achieve a mirror-like finish. Subsequently, the samples were sealed in quartz tubes under purified (5N) Ar atmosphere and subjected to diffusion annealing treatments in the temperature range 1073–1373 K. The furnace temperature was controlled within ± 1 K with the aid of a Ni/NiCr thermocouple (type K). After annealing, the sample diameter was reduced by 1 mm to eliminate errors caused by surface or lateral diffusion. A serial sectioning technique, using a high-precision grinding machine, was used to determine the penetration profiles. Thickness reduction accuracy up to 0.05 μm could be achieved. The intensity of γ-decays was determined by a solid Ge-detector equipped with a multi-channel energy discriminator and the counting times were chosen such that the statistical uncertainty of the measurements was less than 2% in all relevant energy windows. The usage of the multi-channel energy discriminator allowed simultaneous and reliable determination of the concentration profiles for all four isotopes in a single diffusion experiment.

3. Results

3.1. Microstructure and chemical homogeneity of alloys

XRD and SEM results presented in Ref. [12] revealed that the CoCrFeNi and CoCrFeMnNi HEAs crystallize in the FCC structure, with equiatomic composition and uniform distribution of elements. The grain size of both the alloys was found to be in excess of 250 μm. Using differential thermal analysis (DTA), the melting points of the alloys, T_m, were determined to be 1717 K and 1607 K for CoCrFeNi and CoCrFeMnNi respectively [12]. It may be noted that the "T_m" corresponds to the peak temperatures of the melting transitions observed in DTA traces for the respective alloys. The difference between the liquidus and solidus is extremely small for both the alloys.

The coarse grain size and single phase microstructure of homogenised alloys is further confirmed by EBSD phase maps of CoCrFeNi and CoCrFeMnNi, see Fig. 1a and b, respectively. To validate the homogeneity in the local chemical composition and elemental distribution of the HEAs studied, APT investigations have been carried out for the CoCrFeNi and CoCrFeMnNi alloys. The spatial 3D arrangement of all the constituent elements for the CoCrFeNi and CoCrFeMnNi alloys along with their binomial frequency distribution is presented Figs. 2 and 3, respectively. It can be observed that all the elements are homogeneously distributed within the analyzed volume. The binomial frequency analysis further confirms a random distribution of all the elements without any phase separation. The degree of randomness is measured by the parameter μ which varies between 0 and 1, where 0 stands for a complete randomness and 1 indicates clustering or precipitations [19,20]. As can be seen in Figs. 2 and 3, the experimentally obtained frequency distribution for all the constituent elements is in good agreement with their corresponding theoretical binomial distribution of a random solid solution. In addition to the constituent elements, trace amount (<0.05 at.%) of impurity C was detected which as well shows homogeneous and random distribution.

3.2. Co diffusion in HEAs

The geometry of the present experiments corresponds to tracer diffusion into semi-infinite sample. This initial situation refers mostly to the instantaneous source fulfilling the conditions of a thin film geometry [21], for which the Gaussian solution of the bulk diffusion equation is applicable.

$$C(x,t) = \frac{M}{\sqrt{\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$ \hspace{1cm} (1)

Here $C(x,t)$ is the concentration at the depth x from the surface after the time t, D is the diffusion coefficient, and M is the initial tracer amount. The complementary error function solution [21] was found to be more appropriate in some cases, especially at lower temperatures. A distinct grain boundary contribution to the penetration profile under the present conditions corresponds to the B-type kinetic regime after Harrison's classification [22], which can be analyzed using Le Clair's functional form [23].

$$C(x,t) = C_0 \exp\left(-A\cdot x^{6/5}\right)$$ \hspace{1cm} (2)

where C_0 and A are constants.

The 57Co concentration profiles measured at 1173 K for CoCrFeNi and CoCrFeMnNi are given in Fig. 4a and b, respectively. A combination of Eqs. (1) and (2) has been used to fit the experimental data and the R^2 values larger than 0.9 have been obtained in each case. Thus, it is evident that both bulk and grain boundary diffusion contribute to the penetration profiles obtained. The first, near-surface branch of the profile corresponds to a bulk tracer diffusion mechanism. Both the alloys have a very large grain size, d (> 250 μm), consequently the ratio of the grain boundary width (b) to d is very small, which further substantiates that only lattice diffusion is dominant in the regions close to the surface [21]. It has been conclusively shown in our previous results on Ni bulk and grain boundary diffusion that the second branch in such a penetration profile certainly corresponds to grain boundary diffusion [12,15].

The diffusion data from the first branch of the concentration profiles has been extracted and plotted against the penetration depth squared, as illustrated for Co diffusion in CoCrFeMnNi (Fig. 5). The maximum penetration depth increases with increasing temperature and the diffusion coefficient, D, is determined as

$$D = -\left(\frac{1}{\pi}\right)^{1/2}\left(\frac{\text{dlnC}}{\text{dlnx}}\right)^{-1}$$

where dlnC/dlnx is the slope of the penetration profile in the corresponding coordinates, cf. Eq. (1). The estimated uncertainty of the determined tracer diffusion coefficients in a typical measurement is below 20%.

For a given crystal structure, the diffusivities often scale with the corresponding melting points of the materials, T_m, [24]. The diffusion coefficients determined from concentration profiles are therefore plotted as functions of the inverse temperature, T^{-1}, and of the inverse homologous temperature, T_m/T, in Fig. 6 for Co diffusion in both HEAs. When compared against the homologous temperature, Co exhibits a lower diffusivity in CoCrFeMnNi than CoCrFeNi (Fig. 6a). The trend, however, is reversed when the diffusion rates are assessed on the absolute temperature scale (Fig. 6b). A cross-over temperature (T_c) is also observed above which the diffusion rate of Co in CoCrFeMnNi is higher than in...
CoCrFeNi. The value of T_c for Co diffusion is 1020 K. It may be noted that the value of T_c is obtained after extrapolating the Arrhenius lines of diffusion in both HEAs to lower temperatures (or higher 1/T). This is a reasonable supposition as the microstructure of these HEAs is thermally stable up to the melting point [12] and thus the mechanism of diffusion does not change allowing Q to be assumed constant even outside the actual temperature range of diffusion measurements.

3.3. Cr and Fe bulk diffusion in HEAs

Both Cr and Fe crystallize in the BCC structure at room temperature and the investigation of their diffusion behaviour in a complex FCC matrix of HEAs is particularly interesting. Fig. 7a and b exemplify the diffusion profiles of Cr in CoCrFeNi and CoCrFeMnNi HEAs at 1223 K. The grain boundary contribution to the measured penetration profiles of Cr is relatively less pronounced compared to the corresponding Co diffusion profiles at 1173 K (Fig. 5). This indicates lower values of the corresponding Le Clair parameter β for Cr (for details see Ref. [17]). Bulk and grain boundary diffusion contributions are clearly observed in the concentration profiles of Fe diffusion in CoCrFeNi (Fig. 8a) and CoCrFeMnNi (Fig. 8b) too. The bulk diffusion coefficients of Cr and Fe are determined at all temperatures by fitting the experimental data to equations (1) or (2). The radioactive isotopes of both Cr and Fe have short half-lives (27.8 and 44.6 days, respectively) and the diffusion coefficients were determined including the necessary corrections for isotope half-life.
Fig. 9a and b presents the first branches of the penetration profiles plotted against x^2 for Cr and Fe diffusion in CoCrFeMnNi. The adequate fits and increasing penetration depths with temperature substantiate further the presence of bulk diffusion in the near-surface regions.

Fig. 10a shows the Cr diffusion coefficients in CoCrFeNi and CoCrFeMnNi plotted against the inverse homologous temperature. A nearly constant (temperature independent) decrease of the diffusion rates by, approximately, an order of magnitude can be seen for the quinary alloy relative to the quaternary one. The comparison of Cr diffusivities on the absolute temperature scale (Fig. 10b) reveals a slightly higher atomic transport rate in CoCrFeMnNi. Unlike Co, no cross-over temperature is seen for Cr diffusion in HEAs.

The temperature dependence of Fe bulk diffusion in HEAs reveals a similar behaviour to Cr. Diffusion of Fe in CoCrFeMnNi proceeds with lower rates than in CoCrFeNi when examined using the homologous temperature scale (Fig. 11a). The Fe diffusion rates are similar in CoCrFeNi and CoCrFeMnNi when assessed on the $1/T$ scale (Fig. 11b). A cross-over temperature is not observed for Fe diffusion.

Fig. 3. Three dimensional reconstruction of the individual atomic positions for all the constituent elements in an analyzed volume of $90 \times 90 \times 230 \text{nm}^3$ and the corresponding binomial frequency distribution analysis with 100 ions per bin to verify homogeneity in CoCrFeMnNi HEA.

Fig. 4. Concentration profiles of Co tracer diffusion measured at 1173 K in (a) CoCrFeNi and (b) CoCrFeMnNi alloys. The solid lines represent fits according to simultaneous bulk and grain boundary diffusion.

Fig. 5. The first branches (bulk diffusion) of the concentration profiles measured for Co diffusion in CoCrFeMnNi.
Mn is the element with the lowest melting point among the constituents of the CoCrFeMnNi alloy and exhibits a complex cubic structure. Like other tracers, the penetration profile for Mn diffusion in polycrystalline CoCrFeMnNi shows two branches corresponding to bulk and grain boundary diffusion (Fig. 12a). As pointed out earlier, a typical uncertainty of the diffusion coefficient measurements using the radiotracer method is below 20% when similar experimental conditions are maintained. Mn has the highest vapour pressure among all elemental components of CoCrFeMnNi and therefore will be most prone to errors or uncertainties in the diffusivity measurements. Hence, the Mn diffusion measurements were repeated at 1173 K for shorter (16 h) and longer...
times (161 h) and both profiles are presented in Fig. 12a. The penetration profiles obtained are similar for both the measurements and the determined diffusion coefficients are similar. The first branch of the penetration profiles at all temperatures is linear in the coordinates of the logarithm of the tracer concentration against x^2 confirming the presence of a corresponding bulk
HEAs is found to follow Arrhenius behaviour, temperature and time employed for the diffusion annealing. CoCrFeNi and CoCrFeMnNi HEAs are thermally stable during the diffusion contribution (Fig. 12b).

4. Discussion

High configurational entropy in multi-principal element alloys is believed to lend the phase stability to HEAs. However, phase separation at a nano-scale has been observed in HEAs [25,26], even though XRD evinces a single phase structure. Such a microstructure can cause complexity in assessing diffusion behaviour. Therefore, CoCrFeNi and CoCrFeMnNi HEA samples were analyzed using APT (Figs. 2 and 3), which confirms (from the binomial frequency distribution) that no phase separation is seen in both CoCrFeNi and CoCrFeMnNi at near-atomic scale in the present case. Further, it has been conclusively shown in Ref. [12] that the FCC structure of CoCrFeNi and CoCrFeMnNi HEAs are thermally stable during the temperature and time employed for the diffusion annealing.

4.1. Bulk diffusion in CoCrFeNi and CoCrFeMnNi HEAs

The temperature dependence of the diffusion coefficients in HEAs is found to follow Arrhenius behaviour,

\[
D = D_0 \exp \left(- \frac{Q}{RT} \right)
\]

where \(D_0\) is the pre-exponential factor, \(Q\) is the activation energy, and \(R\) is the universal gas constant. The Arrhenius parameters (i.e., \(D_0\) and \(Q\)) for diffusion of all tracers in both CoCrFeNi and CoCrFeMnNi HEAs and other FCC matrices are given in Table 2. The determined Arrhenius dependencies for diffusion of all tracers in CoCrFeNi and CoCrFeMnNi are plotted in Fig. 13a and Fig. 13b, respectively. It has to be noted that although Ni bulk diffusion is not measured in the present work, the Ni diffusion coefficients (and the derived parameters) in Ref. [12] are presented in this manuscript at various instances for comparison and overall assessment of bulk diffusion in the two alloys.

The diffusivities of all tracers in CoCrFeNi do not differ by more than an order of magnitude, although Ni diffusion in the slowest among all (Fig. 13a). The variation of diffusivities in CoCrFeNi can be expressed as \(D_{Ni} \leq D_{Co} \leq D_{Fe} \leq D_{Cr}\) at higher temperatures and \(D_{Ni} \leq D_{Co} \leq D_{Fe} \leq D_{Cr}\) at lower ones, which is in agreement with the trend reported for self diffusion of constituents in FCC Fe-Ni-Cr alloy system [27]. This has been correlated with the electronic structure of the elements as the diffusivities are found to decrease with increase in number of 3d electrons (Cr-4, Fe-6, Co-7, Ni-8) [27]. The exact contribution of the electronic structure during diffusion of atoms calls for the calculation of inter-atomic potentials at the saddle point configuration. Correlation with electronic structure is not evident in CoCrFeMnNi (Fig. 13b). Although, at lower temperatures diffusivities follow the order \(D_{Ni} < D_{Co} < D_{Fe} < D_{Cr}\), diffusivity of Co reduces relative to Ni at higher temperatures. Mn shows the highest diffusion rates in CoCrFeMnNi even though it has higher number of 3d electrons than Cr. This can be attributed to the significantly lower melting point of Mn among other constituents, which results in lower energy required to create an atom-vacancy pair. Within the investigated temperature interval, the maximum difference between the diffusion coefficients of various constituents in both HEAs does not exceed an order of magnitude. In the previous work on interdiffusion in CoCrFeMnNi [8], almost parallel Arrhenius lines for the different constituents have been reported; however, the direct measurements do not support those estimates. This fact substantiates contributions of both, the energy barriers and the frequency factors to diffusion in HEAs.

The activation energies of different elements in these two HEAs can be rationalized by considering relative thermodynamic interaction of an element \(i\) with other constituents. Table 3 lists the mixing enthalpies of all binary pairs constituting the equiatomic HEAs under investigation [28]. We calculate the average enthalpy of mixing of each constituent with all other individual components (\(\Delta H_{avg}\)), in both 4 and 5 component alloys, from the following expression:

\[
\Delta H_{avg} = \frac{\sum_{j=1}^{n} \Delta H_{mix(ij)}}{n}
\]

![Fig. 12.](image)

Fig. 12. (a) Concentration profiles of Mn tracer diffusion measured at 1173 K and (b) the first branch (bulk diffusion) of composition profile data plotted for various temperatures.
Here, ΔH_{mix} is the binary enthalpy of mixing of ith and jth elements. For e.g., ΔH_{CrFe} is 1.7 and 2.5 kJ/mol for CoCrFeNi and CoCrFeMnNi, respectively. The activation energies for Co, Cr and Ni diffusion in CoCrFeNi vary in the order $Q_{\text{Co}} < Q_{\text{Ni}} < Q_{\text{Cr}}$ which correlates well with the trends in their respective average enthalpy of mixing as $\Delta H_{\text{Co}} < \Delta H_{\text{Ni}} < \Delta H_{\text{Cr}}$ (Fig. 14a). A more negative value of ΔH_{avg} suggests a relatively stronger binding of the element with other constituents and hence an increased activation barrier for diffusion. The only exception to this trend in CoCrFeNi is Fe, which has a less negative ΔH_{FemnNi} (-2.5 and -2.75 kJ/mol, respectively) and shows comparable activation energies of diffusion (270 and 272 kJ/mol, respectively). The ΔH_{avg} for Fe, Cr and Ni follows the order $\Delta H_{\text{Co}} < \Delta H_{\text{Ni}} < \Delta H_{\text{Cr}}$, however they exhibit similar values of Q. It is proposed here that the BCC structure and higher melting point of Cr may additionally contribute to higher Q values for Cr despite lower ΔH_{avg}. However, we believe that the systematic diffusion experiments in non-equiatomic quaternary and quinary HEAs with varying concentrations of Cr and Fe can throw more light on this intriguing behaviour.

Equation (3) substantiates that the pre-exponential factor, D_0, has a strong impact on the diffusion rates, too. Co and Ni exhibit low values of D_0 while Fe and Cr have shown high D_0 in both HEAs (Table 2). D_0 is usually expressed as $D_0 = gfa^2v_0\exp(\Delta S/R)$ [24], where g is a geometric factor, f is the correlation factor, a is the lattice parameter, v_0 is the attempt frequency, and ΔS is the diffusion entropy. For a vacancy mediated diffusion mechanism, the correlation factor arises due to an increased probability of reversed atomic jumps that result in reduced diffusion distances with respect to those for a completely random atom movement. The value of f is a constant for bulk diffusion in a given crystal structure ($f \sim 0.787$ for FCC). Thus, for a given alloy, except for ΔS, other parameters remain constant for diffusion of all constituent elements. ΔS is the change of the entropy of lattice vibrations originating from a constrained movement of the diffusing atom through a saddle point configuration [29,30]. ΔS has two contributions namely,
vibrational and configurational. A change of the vibrational component of \(\Delta S \) will depend upon the lattice stiffness and the bond lengths of the diffusing atom in the matrix, while the coordination number of the diffusing atom in the lattice determines the configurational part [29]. Thus, the low values of \(\Delta S \) for Co and Ni in CoCrFeNi and CoCrFeMnNi call for detailed investigations of the elastic constants and short range order, e.g., using first principle calculations.

An interesting feature observed during comparison of bulk tracer diffusivities in CoCrFeNi and CoCrFeMnNi HEAs is the appearance of a cross-over temperature (\(T_c \)) for Co (Fig. 6), which is similar to what has been reported earlier for Ni diffusion [12]. The values of \(T_c \) are 970 and 1020 K for Ni and Co, respectively, above which their diffusion rates in CoCrFeMnNi alloys are higher than in CoCrFeNi alloys. However, as shown in Figs. 10 and 11, the cross-over temperature is not observed for Fe and Cr diffusion in these HEAs. This behaviour can be rationalized if the effect of Mn addition on CoCrFeNi is considered. The melting point of CoCrFeNi is 1717 K, which reduces to 1607 K in CoCrFeMnNi. This implies that at any given absolute temperature, the equilibrium vacancy concentration is higher in CoCrFeMnNi, which will tend to increase the rate of substitutional diffusion. However, addition of Mn will also cause a change in the \(\Delta H^{\text{avg}} \) values for each constituent. This change in average enthalpy is defined as \(\Delta H_{\text{avg}}^{\text{diff}} = \Delta H_{\text{CoCrFeNi}}^{\text{avg}} - \Delta H_{\text{CoCrFeMnNi}}^{\text{avg}} \) and these values are presented in Fig. 15a. In the case of Co, \(\Delta H_{\text{Co}}^{\text{avg}} \) is 1.7 and 2.5 kJ/mol for CoCrFeNi and CoCrFeMnNi, respectively. So \(\Delta H_{\text{Co}}^{\text{avg}} = -2.5 - (-1.7) = -0.8 \) kJ/mol. Thus, \(\Delta H_{\text{Co}}^{\text{avg}} \) becomes more negative with the addition of Mn, which implies that Co binding is stronger in CoCrFeMnNi in comparison to CoCrFeNi. A similar behaviour is seen for Ni as well, where \(\Delta H_{\text{Ni}}^{\text{avg}} \) changes from -0.0 kJ/mol for CoCrFeNi to -4.25 kJ/mol for CoCrFeMnNi [12]. It results from the fact that the Ni-Mn and Co-Mn pairs have the strongest interaction among the different binaries (Table 3). Thus, the addition of Mn causes two opposite effects on Co and Ni diffusion rates, namely, an increase of the \(\Delta H_{\text{avg}}^{\text{diff}} \) value and a reduction of the alloy melting point. This combination leads finally to the appearance of a cross-over temperature. As shown in Fig. 15a, \(\Delta H_{\text{avg}}^{\text{diff}} \) becomes less negative for Cr and Fe upon Mn addition to CoCrFeNi, which implies that they are less strongly bound in CoCrFeMnNi. Thus, the non-existence of the two opposite effects of Mn addition on Cr and Fe diffusion explains why the cross-over temperature is not observed in case of Cr and Fe.

Fig. 15b reveals the change of the activation energy (\(\Delta Q \)) for diffusion of corresponding constituent between CoCrFeNi and CoCrFeMnNi.

4.2. Bulk diffusion in HEAs and other FCC matrices

The bulk tracer diffusion behaviour of the constituent elements in CoCrFeNi and CoCrFeMnNi, discussed in an earlier section, reflects the fact that the influence of the configurational entropy on diffusion in HEAs is not straightforward. To elaborate further the effect of mixing entropy, the diffusivities of Co, Cr, Fe and Mn in different FCC matrices are compared on the homologous temperature scale (Fig. 16). In order to simplify the interpretation, the diffusion coefficients \(D \)'s are not rescaled as \(D' = D \left(\frac{M}{\sigma a} \right)^{1/2} \), see e.g. Ref. [10], since the relative positions of different data lines would be hardly affected but the main message is more straightforward when the measured diffusivities are plotted (here \(M \) is the composition-weighted mean of the atomic masses in the alloy and \(a \) is the corresponding lattice constant [10]).

Co diffusion in CoCrFeNi and CoCrFeMnNi is slower when compared to that in pure Co (Fig. 16a) [31,32]. Decelerated rates of the atomic transport are observed for Cr [27,33] and Fe [27,34] as the number of components increase from pure Fe to the quinary alloy (Fig. 16b and c, respectively). Mn bulk-diffusion is slower in the quaternary and quinary HEAs relative to pure Mn (Fig. 16d) [32,35]. It can thus be inferred that with an increasing number of components in the alloys, when compared against the inverse homologous temperature, the diffusion rates in the FCC matrix are retarded.

Diffusion of all constituents in the quinary alloy is characterized by higher normalized activation enthalpies \(Q^* = Q/R T_m \) when compared with lower component alloys. This is exemplified for Co and Cr diffusion in Fig. 17a and b, respectively. The increase of \(Q^* \) can be attributed to a depression of the melting point caused by the Mn addition and it gets further enhanced for Co diffusion due to the increase of \(\Delta H_{\text{avg}}^{\text{diff}} \). In case of CoCrFeNi, lower \(\Delta S \) values are observed for Co diffusion in CoCrFeNi (Fig. 17a), which accounts for its lower

![Fig. 15](image-url)
diffusivities when compared to other FCC matrices. Retardation of Cr diffusion rates in CoCrFeNi can be attributed to a higher \(Q^* \) value (Fig. 17b). The attributes of Co diffusion in CoCrFeNi and CoCrFeMnNi HEAs exhibit similarities with the Ni diffusion behaviour reported in Ref. [12].

When compared on the absolute temperature scale, the increased configurational entropy does not follow the reduction in diffusivities as exemplified for Co and Cr diffusion in different matrices (Fig. 18a and b). A similar behaviour is seen for Fe and Mn diffusion as well (not shown here).

The reversal in diffusivity trends between the homologous and absolute temperature scales and the existence of a cross-over temperature for Co and Ni diffusion in HEAs allows deducing that the original hypothesis of sluggish diffusion in HEAs is not valid for the alloys studied in this work. Experimental investigations of tracer diffusion in others HEA systems are essential to obtain...
deeper insights into the effect of increasing the number of elements. However, a major challenge would be to identify HEAs having a single phase composition with a sufficiently high thermal stability.

4.3. “Compensation law” for diffusion in HEAs

In the limited literature available for diffusion in HEAs (Table 1), the relationship between \(D_0 \) and \(Q \) has not been examined so far. In Fig. 19, the pre-exponentials factors \(D_0 \) for diffusion of all constituents in CoCrFeNi and CoCrFeMnNi are plotted against the corresponding values of the activation enthalpy \(Q \). An almost perfectly linear relationship is seen, the solid line, which is determined using a least square fit as

\[
\ln D_0 = (-42.5 \pm 1) + (0.116) \cdot Q \tag{5}
\]

Here \(D_0 \) and \(Q \) are expressed in \(\text{m}^2/\text{s} \) and \(\text{kJ/mol} \), respectively. Such an empirical linear correlation between \(D_0 \) and \(Q \) is often called as compensation law in Meyer–Neldel rule and it is observed for wide variety of thermally activated processes such as grain boundary and interfacial diffusion, grain boundary migration, dislocation movement and electron transport [36]. The origin of the Meyer-Neldel rule lies in the multi-excitation process to overcome the activation barrier [37]. To illustrate, diffusion of an atom proceeds via a saddle point configuration or an activated state, for which thermal fluctuations (or excitations) are required. When the activation energy to reach the transition is sufficiently high, multiple excitations become necessary to surmount the energy barrier [38]. The number of ways in which these fluctuations can manifest gives rise to an entropic contribution and thus increases diffusion entropy \((\Delta S) \) and consequently \(D_0 \). In other words, the high energy barrier in a thermally activated process gets “compensated” by increasing the number of paths to the activated state. The coefficient of \(Q \) in Eq. (5) is equal to \(1000/R T^* \), where \(T^* \) is the compensation temperature (\(T^* \)). The values of \(T^*/T_m \) for CoCrFeNi and CoCrFeMnNi turned out to be 0.60 and 0.65, respectively, which fall in the range generally observed for polycrystalline alloys [39].

Further, two important points regarding the compensation law need to be noted. Firstly, although attempts have been made to support physical explanations of Meyer-Neldel rule attempted through atomistic simulations [40], Eq. (5) is still an empirical relation and need not be universally applicable [41]. As seen in Fig. 19, the linear relationship is valid for all elements except Mn in CoCrFeMnNi. Mn reveals larger \(D_0 \) as it would be followed from Eq. (5), by almost an order of magnitude. This fact indicates probably a specific situation for diffusion of Mn atoms in CoCrFeMnNi. Note that Mn is the fastest diffusing element in the alloy and its concentration is above the percolation threshold for diffusion in a binary mixture [42] (if all other elements will be considered as belonging effectively to the same type in a mean-field approach). Secondly, compensation only implies that the increased activation barrier for diffusion can be moderated by creating additional thermal excitations (higher \(\Delta S \)), which increase \(D_0 \). It does not, however, necessitate that the governing factors are the same for \(D_0 \) and \(Q \) for diffusion or any thermally activated process. The deviations for Mn from the ‘general trend’ do support this point of view.

The relation between the values of \(Q \) and \(\Delta S \) is further explored in Fig. 20 by plotting the values of activation entropies, \(\Delta S/R \), for Co, Cr, Fe and Mn diffusion in HEAs and other FCC matrices as function of the corresponding activation energies \(Q \). The value of \(\Delta S/R \) is calculated from the expression for \(D_0 \) given earlier by taking an average lattice parameter of 0.355 nm, constant geometric and correlation factors (1 and 0.787, respectively) for the FCC lattice and taking \(n_0 \) as the Debye frequency \((10^{13} \text{ s}^{-1}) \). Fig. 20 substantiates the existence of a linear dependence of \(\Delta S/R \) vs. \(Q \) for a broad spectrum of FCC alloys which could be derived from Eq. (5). It is important to note that Fig. 20 shows the results of many independent measurements, which thus excludes any systematic error. The linearity of \(D_0 \) vs. \(Q \) dependence for HEAs and lower component FCC systems presents an intriguing aspect. It hints that an increased number of
components in HEAs do not alter the atomistic processes of diffusion as long as the crystal structure remains same. This also presents the need to delve deeper into the crystal structure of HEAs and decipher the uniqueness that a multi-element matrix really brings in.

4.4. “Sluggish” diffusion in HEAs — number of elements or atomic configuration?

The bulk diffusion results presented above show that diffusion needs not be sluggish in HEAs. Even the results of the very first study on diffusion in HEAs [8], when analyzed on the absolute temperature scale, revealed that the measured diffusivities are not very different from those in pure elements or binary alloys [7]. Miracle and Senkov [7] also argued that most of the experimental investigations that supported the claim of sluggish diffusion in HEAs were based on secondary observations. In fact, some of the recent studies have hinted towards the non-sluggishness of diffusion in HEAs too [43,44]. So, does it mean that the premise of sluggish diffusion in HEAs is flawed? To address this question, a distinction needs to be made between the number of elements and the configurations of elements in an alloy. To give a simple illustration we compare the CoCrFeMn0.5Ni and CoCrFeMn1Ni HEAs (the sub-index “1” can be omitted in the latter case, we keep it just for clarity). In fact, the number of elements remains the same, whereas their configuration (or composition) changes. However, upon alloying CoCrFeNi with Mn (to the compositions CoCrFeMn0.5Ni and CoCrFeMn1Ni), we change the number of elements as well as their configuration. The implication of this classification is that when a new element is added to a multicomponent system, thermodynamic changes introduced are much larger and will certainly depend on the type of the element added. For example, CoCrFeNiAl and CoCrFeMn3Mn have similar configurational entropies, but are significantly different in their structures (predominantly BCC and exclusively FCC, respectively) and properties [45]. When only the configuration of the constituents is changed, the thermodynamic properties of the system vary by a smaller extent and the influence of configurational entropy can be brought out in a more lucid way. The “sluggish” diffusion effect was apparently proposed to imply the effect of merely increasing the number of elements and could not explicitly take into account the influence of the type of the component added. Therefore, we believe that a more appropriate way of presenting the core concept of “sluggish” diffusion in HEAs would be to define it in terms of the changes of the configurational entropy while retaining the same alloy constituents. For example, Yang et al. [46] studied the crystallization kinetics in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glasses, where former showed a higher stability. Thus, a way forward for deeper understanding of diffusion in HEAs would be to determine the bulk diffusivities of non-equiaxed and equiatomic HEAs with the same constituents.

5. Conclusions

The radiotracer method has been applied to determine the tracer diffusion coefficients of Co, Cr, Fe and Mn in the CoCrFeNi and CoCrFeMnNi HEAs. Two contributions to the atomic transport kinetics are observed in the penetration profiles for both quaternary and quinary polycrystalline alloys, and the bulk diffusion coefficients are accurately determined.

Ni shows the lowest diffusion rates in both CoCrFeNi and CoCrFeMnNi, while Mn diffuses fastest in CoCrFeMnNi. The activation energy (Q) of Co diffusion is significantly higher in CoCrFeMnNi than in CoCrFeNi and can be correlated with the more negative average mixing enthalpy (∆Havg) in the quinary alloy. The Q value for Fe and Cr are similar in both HEAs in accordance with their similar values of ∆Havg in both alloys. A cross-over temperature, above which diffusion is faster in the CoCrFeMnNi alloy relative to CoCrFeNi, is observed for Co diffusion. It is attributed to two opposite effects of the Mn addition, namely, a depression of the melting point and a more negative value of ∆Havg of the constituents in the quinary alloy.

Decelerated bulk diffusion rates have been measured in HEAs relative to the FCC matrices with a smaller number of principal elements when the homologous temperature is used for comparison. Both the energy barriers and the entropy factors (derived from Do) contribute to the lower diffusion rates. A tendency of decreasing diffusivities with increasing number of components is not evident when the absolute temperature scale is used for comparison of the diffusion rates. Our results conclusively substantiate that diffusion should not be assumed sluggish in HEAs due to the mere increase of the number of elements; in fact the type of elements plays a more pronounced role. We suggest that a more appropriate way to reformulate the “sluggish-diffusion” core effect in HEAs to the extent that it is classified in terms of the changes in the configurational entropy while retaining the same alloy constituents.

Acknowledgements

Financial support from the Growing Spine Foundation, DFG, project DI 1419/13-1, is acknowledged. M. Vaidya would also like to thank DAAD for providing a scholarship to carry out tracer diffusion experiments at University of Münster, Germany. GW acknowledges partial support by DFG. The authors also acknowledge the support of DAAD in facilitating the RWTH-IITM strategic partnership program.

References

[5] T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-

Fig. 20. Diffusion entropy ΔS/R (derived from the pre-exponential factor, D0, see text) as a function of the corresponding activation energy for diffusion of the constituent elements in binary, ternary and high-entropy alloys. Linear relationship obtained using least square fit is evident [47].