Tailored precipitation (B2, L2₁) strengthened, compositionally complex FeAlCr (Mn, Co, Ni, Ti) alloys for high temperature applications

Christian Liebscher
Structure and Nano-/Micromechanics of Materials

Max-Planck-Institut für Eisenforschung GmbH

&

Konda G. Pradeep
Institute of Materials Chemistry

RWTH Aachen University
Tailor the phase decomposition in HEAs to establish CCAs for high temperature applications.

Preliminary results

HEA branch
High-throughput compositional screening

Classical alloy branch
B2-strengthened ferritic alloy (0Ti)

Stabilization of B2-CoAl precipitates

Objectives and work programme

Objectives
- BCC-CCAs with tailored B2/L2₁-precipitates
- Low-cost, low-density alloys 6-7 g/cm³
 - Creep resistance up to 900°C
- Maximized solid solution strengthening & precipitation hardening

Starting alloy systems:
- Fe-Al-Cr-
- Mn-Co
- Ni-Ti

Bulk mechanical testing (WP3)
- compression, tension, creep

Microstructural characterization (WP4)
- 3D-APT
 - (S)TEM

High throughput screening (WP1)
- Identify promising alloy candidates

Re-optimization loop
- Microstructure-property relationship
- Property evaluation of optimized alloys

Bulk synthesis (WP2)
- Microstructure based alloy optimization (SEM, XRD, TEM, APT)
Contributions to the SPP and collaborations

Contributions to the SPP:
- Development of CCAs for high temperature applications
- Tailoring complex composition and phase space to optimize microstructure
- Establishing future low cost, low density alloys with good HT mechanical properties
- Microstructural optimization based on scale bridging characterization

Collaborations within the SPP:

<table>
<thead>
<tr>
<th>Collaborator</th>
<th>provides</th>
<th>receives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Uwe Glatzel</td>
<td>Directional solidification & single crystal growth</td>
<td>(S)TEM characterization</td>
</tr>
<tr>
<td>Dr. Michael Feuerbacher</td>
<td>Synthesis poly- & single crystals</td>
<td>HT mechanical testing & APT</td>
</tr>
<tr>
<td>Dr. Christian Haase</td>
<td>Production through additive manufacturing</td>
<td>(S)TEM characterization of deformed samples</td>
</tr>
<tr>
<td>Dr. Sergiy Divinski</td>
<td>Tracer diffusion measurements</td>
<td>APT characterization of interfaces</td>
</tr>
<tr>
<td>Dr. Mathias Galetz</td>
<td>High temperature oxidation tests</td>
<td>Hot tension test & STEM characterization</td>
</tr>
</tbody>
</table>