

RUHR-UNIVERSITÄT BOCHUM Lehrstuhl Werkstoffwissenschaft materials science and engineering

RUB

Stacking fault energy measurements in modified Cantor alloys

C. Reinhart

Ruhr-Universität Bochum

14 February 2018

Introduction

(a) Full dislocation with Burgers Vector b of type ½<110>

(b)Beginning ofa dissociated dislocation(Local hexagonal stacking: ABA)

(c)

Full dislocation dissociated in two Shockley partials with a stacking fault in between. Vector c and d of type 1/6<112>

RUB

Introduction

Processing

State of the art

Stacking fault energy (SFE)

Effect of chemical composition on SFE

(1)	Alloy	Stacking fault energy (mJ/m ²)	Introduction
	Cr ₁₄ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₆	57.7	Dressesing
	Cr ₂₀ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₀	25.5	Processing
	Cr ₂₆ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₁₄	3.5	Results
(2) 2 <u>0 r</u>	5.7 ± 1.0 nm	$\begin{array}{c} g=20\overline{2} \\ //[\overline{1}01] \end{array} \longrightarrow \begin{array}{c} \text{SFE measured:} \\ 30 \text{ mJ/m}^2 \end{array}$	Kesuits

(1) Zaddach et al. Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy (2013)

(2) Okamoto et al. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy (2016)

RUB

. . .

Processing

As-cast ingot

Ø 45 mm

Vacuum induction melting

500 mbar Ar

Ingot after homogenization at 1200 °C / 48h

Ø 40 mm

Introduction

Processing

Results

Swaged from 40 down to 16.5 mm

Ø 16.5 mm

Annealing temperatures (1h) 900 °C

Results - Microstructure

Alloy	Heat treatment	Grain size
Cr ₁₄ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₆	900 °C / 1h	18 µm
Cr ₂₆ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₁₄	1100 °C / 15 min	100 µm

Introduction

Processing

Results

 $Cr_{26}Mn_{20}Fe_{20}Co_{20}Ni_{14}$ after recrystallization (a) 900 °C for 1 h (b) 1100 °C for 15 min

Results - Microstructure

~		≺_
	-	2

Alloy	Heat treatment	Grain size
Cr ₁₄ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₆	900 °C / 1h	18 µm
Cr ₂₆ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₁₄	1100 °C / 15 min	100 µm

- Both alloys have a single FCC solid-solution phase
- No texture was observed
- Stacking fault energy is independent of the grain size

(a) 2<u>00 μm</u>

 $Cr_{14}Mn_{20}Fe_{20}Co_{20}Ni_{26}$ after recrystallization at 900 °C for 1 h (a) BSD picture (b) EBSD mapping

Results

Processing

Introduction

Sample preparation

Introduction

Processing

Results

Advantages:

- Many samples out of small amount of material
- Samples are easy and fast to produce

Results – compression tests

 Different yield stress Cr₁₄Mn₂₀Fe₂₀Co₂₀Ni₂₆: 253 MPa (grain size: 18 μm) Cr₂₆Mn₂₀Fe₂₀Co₂₀Ni₁₄: 216 MPa

(grain size: 100 µm)

Alloy	Stacking fault energy (mJ/m ²)	
Cr ₁₄ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₆	57.7	Introduction
Cr ₂₀ Mn ₂₀ Fe ₂₀ Co ₂₀ Ni ₂₀	25.5	
$Cr_{26}Mn_{20}Fe_{20}Co_{20}Ni_{14}$	3.5	Processing

Results

If in Cr₁₄MnFeCoNi₂₆SFE is 57 mJ/m²

- edge dislocation spacing of 3.4 nm
- screw dislocation spacing of 1.8 nm

Two methods to produce TEM samples

(1) Twin jet electro polishing

Introduction

RUB

Processing

Results

Compression sample cut in slices

TEM sample after the electro polishing

14.02.2018

Twin jet electro polishing

Bright field picture Cr₁₄Mn₂₀Fe₂₀Co₂₀Ni₂₆ after 4 % compression

11/17

Two methods to produce TEM samples

(1) Twin jet electro polishing

Weak Beam Dark Field g/3g

Advantages:

Good sample quality •

Diffraction

Disadvantages:

Orientation of analyzed grains cannot be influenced

Introduction

Processing

Results

14.02.2018

Two methods to produce TEM samples

(1) Focused Ion Beam (FIB)

Two methods to produce TEM samples

(2) Focused Ion Beam (FIB)

Advantages:

Disadvantages:

- Perfect orientation of grain
- Bad sample quality

RUB

Introduction

Processing

Results

14.02.2018

•

14.02.2018

Results

15/17

SFE for the alloys Cr₁₄Mn₂₀Fe₂₀Co₂₀Ni₂₆ and Cr₂₆Mn₂₀Fe₂₀Co₂₀Ni₁₄
Processing route to produce single phase ECC Cr. Mp. Fe. Co. Ni

Promotion - Werkstoffwissentschaften

- Processing route to produce singe phase FCC $Cr_{26}Mn_{20}Fe_{20}Co_{20}Ni_{14}$ with grain size ~ 20 μm
- Critical twining stress for the alloy $Cr_{14}Mn_{20}Fe_{20}Co_{20}Ni_{26}$ and $Cr_{26}Mn_{20}Fe_{20}Co_{20}Ni_{14}$

Christian Reinhart | www.rub.de/ww |

Acknowledgment

Prof. Easo George Prof. Guillaume Laplanche Prof. Antonin Dlouhy Dr. Alexander Kostka Dennis Langekämper Kornelia Strieso Norbert Lindner Claudia Brügge The whole chair Werkstoffwissentschaft

Introduction

Processing

Introduction

Processing

Results

Thanks for your attention

Results – Work hardening rate

Stacking fault energy (SFE)

400 nm (2-20) B₃

RUB

Processing

- Cr₁₄MnFeCoNi₂₆ at RT 4 % compressed
- Spacing could not be measured exactly

Twin jet electro polishing

Compression sample cut in slices

TEM sample after the electro polishing

Introduction

Processing

Compression sample

Introduction

Processing

