

Microstructural properties of Al-containing refractory high entropy alloys for high temperature applications

Peculiarities of ordering in Ta-Nb-Mo-Cr-Ti-Al

H. Chen¹, A. Kauffmann¹, S. Seils¹, T. Boll¹, D. V. Szabó¹, F. Müller², B. Gorr², H.-J. Christ², K. S. Kumar³, M. Heilmaier¹

¹Institute for Applied Materials (IAM-WK), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany ²Institut für Werkstofftechnik, University of Siegen, Siegen, Germany ³School of Engineering, Brown University, Providence (RI), USA

HE 1872/34-1

Institute for Applied Materials IAM–WK

SPP project meeting in Hannover, 14.02.2018

Introduction

■ Alloy development → for high temperature applications

Lack of ductility on macroscopic scale between room temperature and 400 °C^{1,2} → characterization of mechanical properties difficult

Microstructural characterization to understand intrinsic brittleness

¹H. Chen et al., Microstructure and mechanical properties at elevated temperatures of a new AI-containing refractory high entropy alloy Nb-Mo-Cr-Ti-AI, Journal of Alloys and Compounds 661 (2016) 206-215.
²H. Chen et al., Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys, Metallurgical and Materials Transactions A 49 (2018) 772-781.

Microstructure

Suppression of competing phases MoCrTiAl 1200 °C / 20 h MoL **TaMoCrTiAl** [3301] 250 µm [1211] [1100 Cr K [4510] 250 µm [1210] TIK OK AIK TaMoCrTiAl 1500 °C / 20 h Mo L [1540] 157231 hex. Laves phase Cr₂Ta Cr K Cr₂Ta Cr₂Nb $AI(Mo,Nb)_3$ TIK AIK Ta L Ti(Al,Cr)₃ OK

H. Chen - Microstructural properties of Al-containing refractory high entropy alloys for high temperature applications

Atom probe tomography (APT)

Homogeneous microstructure down to nm scale

H. Chen - Microstructural properties of Al-containing refractory high entropy alloys for high temperature applications

Indications of ordering

- XRD: gentle indications of B2 superstructure in Nb-Mo-Cr-Ti-Al
- TaMoCrTiAl exhibits significant superlattice peaks
- Morphology of B2 ordered phase? → TEM

Peculiarities of ordering

 TEM-SAD: Superlattice spots observable in all investigated alloys
 TEM-BF: Antiphase domain boundaries (APBs) reveal disorderorder phase transformation during cooling

Homogeneously ordered B2 crystal structure in all alloys

Properties of ordering

- Lattice shift at APB -> chemical inhomogeneity
- APBs reveals site occupation
 Cr: site 1 Ti: site 2
 Mo, Al: evenly distributed

MoCrTiAl

APBs enriched in Cr (occupies lattice site 1) and depleted in Ti (site 2)

H. Chen - Microstructural properties of Al-containing refractory high entropy alloys for high temperature applications

element concentration

Summary

- Ta-Nb-Mo-Cr-Ti-AI: Uniform element distribution after homogenization treatment
- B2 type ordered crystal structure forms during cooling
- Approach to reveal site occupation by APT on APBs
- Contribution of ordering to lack of ductility \rightarrow project outlook

Thank you for your kind attention.

Many thanks to:

Deutsche Forschungsgemeinschaft (DFG), HE 1872/31-1 and HE 1872/34-1

Karlsruhe Nano Micro Facility (KNMF)

Carl Zeiss Stiftung

Carl Zeiss Stiftung

H. Chen - Microstructural properties of Al-containing refractory high entropy alloys for high temperature applications

Thermal stability of ordering

MoCrTiAl, as homogenized

- At which temperature does bcc-B2-transformation occur?
 TEM heating experiment
- TEM-SAD: Super lattice spots completely vanish at 1000 °C

Disorder-order phase transformation

 λ-shaped peaks reveal second order phase transformation at T_{peak}

Observable in all alloys

■ DSC at varying heating rates → T_{onset} does not seem to be related to disorder-order phase transformation

Solid solution strengthening of HEAs

• Atomic size difference $\delta \leftrightarrow$ mechanical properties

$$\delta = \sqrt{\sum_{i} x_{i} \left(1 - \frac{r_{i}}{\overline{r}}\right)^{2}}$$

- x_i: Concentration of element i
- r_i: Atomic radius of element i
- r: Mean atomic radius
- Bcc alloys: T dependent mechanical properties
- Influence of thermally activated processes on strengthening of bcc high entropy alloys

$\delta \leftrightarrow alloy \ composition$

 $\delta \leftrightarrow {}^{}_{\mu} H^{RT}$

Contribution of T dependency of mechanical properties in bcc alloys not considered, so far

- Section II: Lattice dislocation interactions are revealed
- Responsible mechanism regarding solid solution strengthening

Determining T-range of athermal plateau properties $\sigma_{f}^{\text{plateau}}$

T dependency of mechanical properties

- Alloys: NbMoCrTiAl, MoCrTiAl, NbMoTiAl
- 400 °C 1200 °C
 - Compression tests \rightarrow T dependent flow stress σ_{f}
- RT 400 °C
 - Lack of ductility on macroscopic scale

10 µm

Nanoindentation \rightarrow T dependent nanohardness nH

Determination of $nH^{plateau} / \sigma_{f}^{plateau}$

RT – 400 °C: Varying increase of mechanical properties of respective alloys

400 °C – 600 °C: nH^{plateau} / $\sigma_{f}^{plateau}$

$\delta \leftrightarrow nH^{plateau} \sigma^{plateau}$

 \mathbf{b} $\mathbf{\delta}$ tends to correlate with athermal properties nH^{plateau} / $\sigma_{f}^{\text{plateau}}$

- EBSD maps show orientation of the grains
- Undeformed: Random distribution of grain orientations
- Deformed: Amount of orientation with [001] and [111] crystallographic axes parallel to the compression direction increased

(111)

Deformation behavior

multiples of the random distribution

0.86	1	1.16	1.35	1.56	1.81	2.1	

EBSD: Inverse pole figures

- Increase of orientation density at [001] and [111] crystallographic axes parallel to compression direction
- Deformation by dislocation slip with <111> slip direction is observed

EBSD: Dislocation mediated plasticity within solid solution

- No plastic deformation on macroscopic scale below 400 °C
- Temperature-dependent strength

Macroscopic plasticity between 400 °C and 1200 °C