

Entropy effects on mechanical properties of high entropy alloy CrMnFeCoNi at high and low temperatures

Christian Gadelmeier¹, Sebastian Haas¹ Mike Moosbacher¹, Fabian Krieg¹, Uwe Glatzel¹

¹ Metals and Alloys, University Bayreuth, Germany

In cooperation with Forschungszentrum Jülich GmbH

"Entropy Effects on Mechanical Properties of Single-Phase High Entropy Alloys"

Goals of the Project

Central scientific questions to be answered for:

Alloy manufacturing

Induction casting of single-crystal (SX) Cantor

University Bayreuth

Christian Gadelmeier, Metals and Alloys

Mechanical testing from -269 °C to ~1300 °C

Measuring of specific heat capacity and determination of entropy

Two Netzsch DSC instruments used:

- - 170 °C \rightarrow +600 °C (Metals and Alloys Bayreuth DSC 204)
- room temperature \rightarrow melting point (Netzsch Selb DSC 404)
- Cooling / heating rate 20 K/ min
- Liquid nitrogen as cooling agent

University Bayreuth

Christian Gadelmeier, Metals and Alloys

1. Single-Crystal under vacuum

Single-crystal

Manufactured:	Bridgman furnace
Atmosphere:	vacuum
Cast temp.:	1400 °C
Initial weight:	300 g
Pull-down speed:	3 mm/min

nominal: 20 at.% each element

Position D \rightarrow E: μ -XRF linescan

University Bayreuth

Christian Gadelmeier, Metals and Alloys

2. Variation of Mn content

 \rightarrow Transfer: Poly-crystal production using induction casting / argon atmosphere

Conclusion & Outlook

element

content

constant

- First c_p measurements of SX Cantor-alloy realized \rightarrow Entropy S_{th} determined \checkmark
- Using argon as atmosphere for fabrication \rightarrow stable melting process $\boldsymbol{\zeta}$
- Best element distribution at an initial weight of Mn of 21-22 at.%
- Master alloy fabrication of Cantor alloy has already been started

Outlook

- Current studys: first tensile tests of SX Cantor alloy at low temperature (→ TU Dresden)
- Fabrication of SX Cantor alloy for HT-characterization will start next
 - \rightarrow Mechanical properties : variation of the composition
 - SX in comparison to PX

Thank you for your attention!

University Bayreuth