

Mechanical characterization of modified Compositionally Complex Alloy (CCA) $Al_{10}Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6$ (in at.%) at elevated temperatures

Sebastian Haas¹, Anna Manzoni², Uwe Glatzel¹

¹ Metals and Alloys, University Bayreuth, Germany ² Helmholtz-Zentrum Berlin für Materialien und Energie

- Introduction:
 - Development of Al₁₀Co₂₅Cr₈Fe₁₅Ni₃₆Ti₆
- Characterization of base alloy
- Aims and goals of the project
- Microstructural optimization
- Alloy manufacturing
- Mechanical characterization
- Outlook

Starting point:

Equiatomic & multicomponent alloy system AlCoCrCuFeNi

- more than 6 (bcc) phases
- brittle

High Entropy Alloy (HEA)

Optimization steps:

- Elimination of segregation-element Cu
- Increase of face-centered cubic Ni
- Addition of Ti
- $\succ Al_{10}Co_{25}Cr_8Fe_{17}Ni_{36}Ti_6$
 - no base element
 - good mechanical properties

Compositionally Complex Alloy (CCA)

<u>Needles:</u> Al-rich phase (4% volume fraction) Particle length (γ'): ~ 450 nm Volume fraction (γ'): ~ 40% Secondary γ' in the range of some nanometers

Characterization of $Al_{10}Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6$

Chemical analysis (SEM/TEM*-EDS)

in at.%	Original composition	Needles	γ/γ -structure*	
			γ-matrix	γ '-precipitates
Al	10	28	7	
Ni	36	33	30	45
Ti	6	7	3	8
Fe	15	10	21	9
Co	25	19	30	23
Cr	8	3	9	4

High Al-content in needle-phase, due to a decrease of Ni and especially Fe, Co and Cr Co-, Cr-, Fe-rich matrix Al-, Ti-, Ni-rich precipitates

* Dr. Anna Manzoni - Helmholtz-Zentrum Berlin

Aims and goals

- Optimization of γ/γ´-morphology (volume fraction & particle size)
 > Improvement of heat treatment
- Addition of trace elements (max. 1 at.%)

Base alloy: Optimization of heat treatment

Cubic shape of γ '-particles

Size and volume-fraction of γ -particles

Same kind of distribution of Al-rich needle phase

Addition of Hafnium

$Al_{9,5}Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6Hf_{0,5}$ (in at.%)

- Eutectic formation at grain boundaries; T(hom) ≠ 1220°C
 - \succ T(hom) = 1140°C
- Spheric shape of Alrich needle phase
- Optimization of heat treatment

Addition of Molybdenum

$Al_9Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6Mo_1$ (in at.%)

Nickel-based superalloys:

- Molybdenum enters matrix and precipitates
- Solid solution
 strengthening of matrix
- Reduction of misfit between γ and γ´
- Spheric shape of γ⁻particles
- Optimization of heat treatment

Alloy manufacturing: Directionally solidification

Induction casting

"Bridgman process"

Vacuum extraction	5·10 ⁻⁴ mbar
Casting atmosphere	Argon
Mould temperature	1400 °C
Initial weight	300 g
"Pull-down speed"	3 mm/min

Mechanical characterization

- Substance of examinations:
 - High temperature tensile tests (RT, 600°C, 700°C, 800°C, 900°C, 1000°C)
 - Creep experiments

- Al₁₀Co₂₅Cr₈Fe₁₅Ni₃₆Ti₆ as a promising material for applications at elevated temperatures (700 800°C)
- Microstructural changes due to the addition of molybdenum and hafnium
- Successful heat treatment optimization steps respective microstructural improvement
- DS-alloy manufacturing by induction casting & Bridgman process
- Outlook:
 - Creep and high-temperature tensile testing
 - Polycrystalin samples
 - > Influence of sample-orientation $(0^\circ, 45^\circ, 90^\circ)$
 - > Investigation of $Al_{10}Co_{25}Cr_8Fe_{15}Ni_{36}Ti_6$ + Zr, B, C, W, Y

Thank you for your attention!

