Strength and deformation of precious high-entropy alloys

Felix Thiel, Jens Freudenberger, Kornelius Nielsch

Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
Institute for Metallic Materials
Metal Physics

1. Project Meeting SPP 2006 CCA-HEA, Hannover, 14.02.-15.02.2018
High entropy alloys

- 5 principal elements
- homogeneous solid solution
- single phase
- simple crystal structure

Compositional complex alloys

- 5 principal elements
- multi-phase microstructure

→ benchmarking alloy for all HEAs
cleanly separation from conventional single phase alloys
Binary phase diagrams in the Au-Cu-Ni-Pd-Pt system

- all show a homogeneous solid solution at high T
- all elements are fcc and do not show allotrope modifications
- no intermetallic phases form out of the melt
- homogeneity covers hole concentration range at high T

→ However: miscibility gaps and phase decompositions at low T
Research issues

- **phase stability**
 - quaternary/quinary alloy

- **solid solution strengthening**
 - effect of solutes to quaternary alloys

- **Au-Cu-Ni-Pd-Pt**

- **strengthening by segregations**

- **Hall-Petch type hardening**
 - SPD for UFG microstructure

- **deformation mechanisms**
 - at RT/77K
 - dislocation glide/twinning
Alloy processing

- alloying
- arc melting
- homogenization
- recrystallization
- cold working
Vegard’s rule of mixture

- solution treatment 1000°C/ 24h
- fcc structure
- single phase

\[a = \sum_{i=1}^{5} x_i a_i \]

- linear dependency of calculated and experimental lattice parameter
 \(\rightarrow \) homogeneous solid solution covers the whole concentration range
Segregations in AuCuNiPt

- second heat treatment in liquid/solid state
 1100°C/17h
- Au & Cu at grain boundaries
 → low elemental melting point
 → pair mixing enthalpy

<table>
<thead>
<tr>
<th></th>
<th>(r_{\text{met}}) pm</th>
<th>(T_m) °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>144</td>
<td>1064</td>
</tr>
<tr>
<td>Cu</td>
<td>128</td>
<td>1085</td>
</tr>
<tr>
<td>Ni</td>
<td>125</td>
<td>1455</td>
</tr>
<tr>
<td>Pd</td>
<td>137</td>
<td>1555</td>
</tr>
<tr>
<td>Pt</td>
<td>139</td>
<td>1768</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Cu</th>
<th>Ni</th>
<th>Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>-5.2</td>
<td>7.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Cu</td>
<td>2.3</td>
<td>-11.4</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td>-9.3</td>
<td></td>
</tr>
</tbody>
</table>

Solution treatment

- single phase at T>950°C
- decomposition at T<900°C into two fcc phases
Homogeneity of AuCuNiPdPt

• atom probe tomography of a solution treated AuCuNiPdPt sample
• decomposition of Au-Cu-Pd and Ni-Pt phase separations of binary systems Cu-Ni, Pd-Pt & Au-Ni at low T
→ improved solution treatment (possible?)
Conclusions

• single phase at high T, phase decomposition at T < 900°C
• heat treatment in liquid/solid area leads to segregations at grain boundaries
• APT shows elemental variations on atomic scale in homogenized state

Thank you for your attention!

Sven Donath, Lars Giebeler, David Geissler, Martin Heilmaier, Alexander Kauffmann, Christiane Mix, David Rafaja, Juliane Scheiter, Dirk Seifert, Sascha Seils, Christiane Ullrich

DFG Deutsche Forschungsgemeinschaft
FR 1714/7-1