Particle-strengthened Compositionally Complex Alloys
Interlinking powder synthesis, additive manufacturing, microstructure evolution and deformation mechanisms (PaCCman)

V. Uhlenwinkel E. A. Jägle G. Dehm

2017-04-04
Dislocation Deformation Mechanisms

Literature:
Mechanical data linked to TEM dislocation studies

Large scatter of values in the literature
One reason: nm-sized precipitates are often overlooked and CCA are interpreted as HEA

Particle-strengthening is a promising mechanism for application of **high-strength CCA at elevated temperatures**

⇒ **Fundamental understanding** of
 - dislocation-based deformation mechanisms
 - dislocation-particle interaction
 - at elevated temperatures

in concentrated solutions is still in its infancy.
Investigated CCA systems and AM

CrFeCoNi
CrFeCoNi
AlCrFeCoNi
AlCrMnFeCoNi

A1
A2
B2 matrix (multiphase alloy)

+ Nitrogen

CrN (?)
in A1 matrix

B2

in A1 matrix

CrN (?)
in A1 matrix

AlN (?)
in A2 matrix

4 matrix/particle combinations targeted

Deformation Mechanism

Requirements:
- Flexibility in compositions
- Chemically homogeneous
- Supersaturated solid solution
- nm-sized, well-dispersed precipitates
- sufficient sample sizes for mech. testing

Selective Laser Melting (SLM) is a process enabling rapid alloy prototyping
process showing rapid solidification
near net-shape process

But: Control over powder quality essential!
- Powder chemistry
- CCA powder microstructure
- Flowability

Selective Laser Melting (SLM) is a process enabling rapid alloy prototyping
Synthesis

- Desired **optimal flowability** via Anti-Satellite atomization

Anti-Adhesion Additives

- Enhanced **powder processing** via additive SiO$_2$ nanopowder

Deformation Mechanism

Desired optimal flowability via Anti-Satellite atomization

Effect of Anti-Satellite System

- Satellites decrease flowability

Particle Size x_p in μm

Roughness radius R in nm

Van-der-Waals Force F_{vdW} in μN

Van-der-Waals sticking

Target for optimum flowability

Satellite locking regime

Particle Size x_p in μm

Effect of Anti-Satellite System

- Anti-Sat.-System
- no Anti-Sat.-System

Circularity C

- Anti-Sat.-System
- no Anti-Sat.-System

- **Desired optimal flowability**
- **Bad flowability**
- **Good flowability**

Additive Manufacturing

Desired optimal flowability

Adjacent figure:

- Satellite particles
- Van-der-Waals Force F_{vdW} in μN
- Particle size $D = 0.4$ nm
- van-der-Waals sticking
- satellite locking regime

Powder Technology

Effect of Anti-Satellite System

- **Satellites decrease flowability**

Parameter:

- Particle Size x_p in μm
- Roughness radius R in nm
- Van-der-Waals Force F_{vdW} in μN
- Circularity C
Toolbox and preliminary work

EDS – Scanning TEM – Z-contrast

AlCrFeCoNiCu0.5

B2

bcc (A2)

N. Peters, MPIE unpublished

SLM

adjusted process parameters

In-situ TEM

5 nm

100 nm

S. Lee, SKKU unpublished

APT of nitrided Fe-Al-Cr

50% Al
13% Cr

100 nm

Deformation Mechanism

HT mech. testing

Deformation Mechanism

Characterization

Additive Manufacturing

SLM

10 mm

flow simulation

particle tracking simulation

Powder Technology

powder plant

atomization

hi-speed image

flow simulation

characterization

SPP2006 – PaCCman – Uhlenwinkel/Jägle/Dehm
Summary and collaborations

Dr. V. Srivastava
Prof. S.-P. Hannula
Dr. J. Epp (SPP)
Dr. A. Mehner (SPP)
Dr. O. Riemer (SPP)

Dr. M. Feuerbacher (SPP)
Dr. M. Heidelmann (SPP)
Prof. Dr. M. Bamberger

Dr. A. Weisheit (SPP)
Prof. Schleifenbaum (SPP)

WP1 • Develop powder synthesis of particle-strengthened CCA
⇒ Ensure composition-independent powder flowability and hence processability

WP2 • Establish Selective Laser Melting as component production process for particle-strengthened CCA
⇒ Flexible and fast production of homogenous cm-sized parts

WP3 • Fundamental understanding of dislocation-based plasticity in CCA matrix and particle-strengthened CCA
⇒ Tailor mechanical properties at variable temperatures

Thank you for your attention!