

<u>Daniel Gaertner</u>¹, Jonas Lübke¹, Josua Kottke¹, Yury Chumlyakov², Vladimir Esin³, Gerhard Wilde¹, Sergiy V. Divinski¹ Katrin Abrahams⁴, Ingo Steinbach⁴

¹Institute of Materials Physics, WWU Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
 ²Department of Physics of Metals, Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
 ³Centre des Matériaux, MINES Paristech, 63-65 rue Henri Auguste Desbruères Corbeil-essonnes, 91003 Evry Cedex, France
 ⁴ICAMS, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany

living.knowledge

February 15th, 2018

Motivation

- High-entropy alloys have four or more components in equiatomic proportion
- A "core effect" based on interdiffusion measurements*: "sluggish diffusion"
- Composition dependent atomic mobilities: combination of tracer and chemical diffusion measurements
- Shape of first measured penetration profiles** are not fully understood yet
- First tracer diffusion experiments in HEA single crystals

Yeh et al. Acta Mater (2013)
 ** Vaidya, Divinski et al. JALCOM (2016)
 Vaidya, Divinski et al. Acta Mater 146 (2018)
 Vaidya, Divinski et al. Acta Mater 146 (2018)

1

Combined tracer/interdiffusion measurements in CoCrFeMnNi HEA

Radiotracer technique

- + Single crystal samples pre-annealed at 1100 $^\circ\text{C}$ for 3 days
- Self-diffusion: annealed at 1100 $^\circ\text{C}$ for different times
- $\bullet\,$ Cu-diffusion: annealed at 700 $^\circ$ C for 12 hours, at 800 $^\circ$ C for 2 hours and at 900 $^\circ$ C for 20 minutes

• Sectioning procedure performed by mechanical grinding (self-diffusion) and ion-beam sputtering (Cu-diffusion)

•
$$D_{\rm v} = -rac{1}{4t} \left(rac{\partial \ln \bar{c}}{\partial y^2}
ight)^-$$

CoCrFeMnNi <111> microstructure (1100 °C, 3 d)

Daniel Gaertner

wwi

Penetration profiles

MONSTER		CoCrFeNi
Element	D_0	$-\Delta H$
	$[m^2 s^{-1}]$	kJ mol $^{-1}$
Со	$7.15 \cdot 10^{-7}$	244
Cr	$1.52 \cdot 10^{-3}$	312
Cu	$6.23 \cdot 10^{-10}$	149
Fe	$2.15\cdot 10^{-4}$	294
Ni	$1.95\cdot 10^{-6}$	258
		CoCrFeMnNi
Element	D_0	$-\Delta H$
	$[m^2 s^{-1}]$	kJ mol $^{-1}$
Со	$4.52 \cdot 10^{-5}$	276
Cr	$2.46 \cdot 10^{-3}$	312
Fe	$1.05\cdot 10^{-5}$	255

 $1.25 \cdot 10^{-4}$

 $6.24 \cdot 10^{-4}$

267

304

Arrhenius plot

Daniel Gaertner

Mn

Ni

<u> 1</u>

Vaidya, Divinski et al. JALCOM (2016) Vaidya, Divinski et al. Sci Rep 7 (2017) Vaidya, Divinski et al. Acta Mater 146 (2018)

Combined tracer/interdiffusion measurements in CoCrFeMnNi HEA

Experimental procedure

- Co₁₅CrFeMnNi₂₅-Co₂₅CrFeMnNi₁₅ high entropy alloy pseudo-binary couple arc melted and homogenized at 1200 °C for 2 days
- Diffusion annealed at 1100 $^\circ\text{C}$ for 2 days

- Chemical diffusion: Interface analyzed by EPMA
- Radiotracer diffusion: Tracer were applied on both surfaces of both samples; sectioning of the samples by mechanical grinding (s.a.)

Microstructure analysis

EPMA & tracer analysis

Composition dependent atomic mobilities

Darken-Manning equation*:

$$egin{aligned} D_{ ext{D-M}} &= (N_{ ext{Co}} D_{ ext{Co}}^* + N_{ ext{Ni}} D_{ ext{Ni}}^*) \cdot (\Phi S)_{ ext{Co-Ni}} \ &\Rightarrow (\Phi S)_{ ext{Co-Ni}} = 1.1 \pm 0.2 \end{aligned}$$

Thin layer isotope sandwich configuration**:

$$D^*(c) = -rac{rac{(y+a)}{2t} - G(y)rac{1}{c(y)}}{rac{\partial \ln c^*(y)}{\partial y} - rac{\partial \ln c(y)}{\partial y}}$$

Daniel Gaertner

wwn

* Darken Transactions AIME 147 (1948)

* Manning Acta Metall. 15 (1967)

** Belova, Murch et al. Phil. Mag. Let. (2015)

Summary

- Bulk diffusion results in single crystals are in good agreement with bulk diffusion results in polycrystals
- Diffusion is time-independent and isotropic
- Mn is the fastest element, Ni the slowest element in both systems
- Tracer diffusion is not retarded ("sluggish") with addition of a further alloying element in equiatomic proportion
- Cu is fastest element at 900 °C and below (low activation enthalpy)

Summary

- Bulk diffusion results in single crystals are in good agreement with bulk diffusion results in polycrystals
- Diffusion is time-independent and isotropic
- Mn is the fastest element, Ni the slowest element in both systems
- Tracer diffusion is not retarded ("sluggish") with addition of a further alloying element in equiatomic proportion
- Cu is fastest element at 900 °C and below (low activation enthalpy)

- No loss of Mn, but Mn evaporates at interface with large gap
- Up-hill diffusion in HEAs pseudo-binary approach
- Almost ideal solid solution alloy after Darken-Manning
- Faster tracer diffusion in Ni-rich part
- Asymmetrical tracer diffusion profiles at interface
- S-shape of concentration dependent Co-tracer diffusion coefficient at 15 at. $\% < y_{Co} < 25$ at. %

Outlook

- Arrhenius-dependence of self-diffusion in CoCrFeNi and CoCrFeMnNi single crystals down to 600 °C
- Cu-diffusion in CoCrFeMnNi single crystals
- Mn-diffusion in CoCrFeNi single crystals
- Grain-boundary diffusion in CoCrFeNi and CoCrFeMnNi bicrystals
- TEM analysis of the dislocation network

Outlook

- Arrhenius-dependence of self-diffusion in CoCrFeNi and CoCrFeMnNi single crystals down to 600 °C
- Cu-diffusion in CoCrFeMnNi single crystals
- Mn-diffusion in CoCrFeNi single crystals
- Grain-boundary diffusion in CoCrFeNi and CoCrFeMnNi bicrystals
- TEM analysis of the dislocation network

- Combined interdiffusion and tracer-diffusion experiments for $Co_{23}CrFeMnNi_{17}\text{-}Co_{17}CrFeMnNi_{23}$ at 1100 $^\circ C$ for 2 days
- Combined interdiffusion and tracer-diffusion experiments for Co₂₅CrFe₁₅MnNi-Co₁₅CrFe₂₅MnNi (including Arrhenius-dependence)
- Simulations of the composition dependent atomic mobilities (see the following talk by Katrin Abrahams!)

Acknowledgements

Thank you for your kind attention!

Financial support by the Deutsche Forschungsgemeinschaft (DFG) (research project DI 1419/13-1) is gratefully acknowledged.

The use of implantation equipment supported by the Federal Ministry of Education and Research (BMBF) through grants 05K13MG1 and 05K16PGA is gratefully acknowledged.

The support by the ISOLDE-team (especially Fabian Hergemöller, Juliana Schell, Karl Johnston & João Guilherme Correia) according to the projects IS626 and IS627 is gratefully appreciated.

Bundesministerium für Bildung und Forschung