

From Chaos to Order: Local Structure in Compositionally Complex Alloy Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃

<u>Anna Manzoni¹, Tobias Scherb¹, Gerhard Schumacher¹, John Banhart^{1,2}</u>

¹Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany ²Technische Universität Berlin, Germany

Motivation: Contribution of SRO to hardness in HEA

SRO in solid solutions: deviation of local composition from statistical distribution of elementsSRO given by:

- Interatomic distance
- Debye-Waller factor
- \rightarrow EXAFS

Scientific aims within the project

Understand:

- the influence of the local structure on hardness and elasticity
- the influence of temperature on local structure and hardness / elasticity
- the contribution of each element to the hardness and elasticity

Work program / methods

- WP1: Alloy and sample preparation
- WP2: Precharacterization and selection of samples
- WP3: Local chemical composition
- WP4: Determination of the local structure (SRO)
- WP5: Mechanical testing and correlation with the local structure

Scientific aims / benefit for the Priority Program

Expected results:

- Different bond lengths for different absorbing elements in EXAFS
- Debye Waller factor **higher** than in corresponding pure metals
- Debye Waller factor different for different absorbing elements
- T-dependence of all SRO parameters
- Correlation between SRO and hardness / elasticity

Benefit for the priority program:

- Basic understanding of SRO hardness/elasticity correlation for other CCA/HEA consisting mainly of TM elements
- Establish a link between the single phase high temperature region ("HEA") and the two phase γ- γ' CCA at low temperatures
- → Enhancing the understanding of the two families HEA-CCA

Thank you!

Motivation: Contribution of SRO to hardness in HEA

SRO in solid solutions: deviation of local composition from statistical distribution of elements

SRO given by: Warren-Cowley SRO Parameter Interatomic distance Debye-Waller factor Number of nearest neighbors

- (1 $\frac{1}{2}$ 0) reflection not allowed in γ and γ' phase
- SRO (~1 nm) pronounced at RT
- SRO dissolves at T > 600 °C
- Influence on hardness expected
- MC + DFT : T-dependence of SRO in NiCrCoFe HEA HEA (Tamm, 2015)
- Change in hardness of

Motivation

High entropy alloys: supposed to be solid solutions with random distribution of elements However: Deviations from random distribution of elements observed by MC-simulation + DFT calculations (Tamm et al., 2015) \Rightarrow influence hardness/strength (Maitia et al. 2016) Short-range order not stable at high temperatures

Warren Cowley short range order (SRO) parameter: $\alpha_{ij}^{\nu} = 1 - p_{ij}/c_j$, p_{ij} : Probability of finding atomic spezies j around an atom of type i in shell ν c_j : atomic concentration of element type j $p_{ij} = c_j : \alpha_{ij}^{\nu} = 0$, random distribution of elements $p_{ij} < c_j : \alpha_{ij}^{\nu} > 0$, Clustering of i-type elements $p_{ij} > c_j : \alpha_{ij}^{\nu} < 0$, preferred location of j-type elements around i-type elements (SRO)

2000

MC-Simulation + DFT calculations (Tamm et al., 2015):

Pair	500 K	800 K	1200 K
Ni-Ni	0.30	0.16	0.13
Ni-Cr	-0.18	-0.21	-0.22
Ni-Co	0.14	0.10	0.12
Ni-Fe	-0.27	-0.04	-0.04
Cr-Cr	0.59	0.54	0.65
Cr-Co	-0.31	-0.18	-0.26
Cr-Fe	-0.10	-0.14	-0.17
Co-Co	0.33	0.13	0.11
Co-Fe	-0.16	-0.05	0.03
Fe-Fe	0.54	0.23	0.17

- Pronounced SRO in NiCrCoFe HEA
- T dependence of SRO

Tamm et al., (2015)

Previous results (Koteski et al)

Previous results: EXAFS (+ DFT-LAPW) - study of Ni:M (M: Mo, Ru, Hf, Ta, W, Re):

Fig. 3. Fourier-transforms of the EXAFS oscillations of the Ni:Ru samples (solid line) and fit (dotted line). The corresponding EXAFS spectra are given in the insets.

Z - dependence of Ni-M bond length

(Koteski et al. 2008)