

Short-range order and microhardness of the compositionally complex alloy Al₈Co₁₇Cr₁₇Cu₈Fe₁₇Ni₃₃

Andrea Fantin¹, Anna Manzoni², Tobias Scherb², Yao Liu³, Gerhard Schumacher^{1,2}, John Banhart^{1,2}

¹Technische Universität Berlin, Germany ²Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany ³Shandong University at Jinan, China

Introduction

Experimental

Results

- Soft X-ray absorption spectroscopy
- Extended X-ray absorption spectroscopy
- Hardness
- Molecular dynamic simulations

Conclusions and outlook

Short-range order in superalloys

by neutron scattering

MC-2, RT (Glas et al., Acta Mater 1996) MCW at 20°C, 970°C (*Prem et al., Appl. Phys. 2002*)

- Diffuse scattering hints of Short-Range Order
 - superstructure peak at [1 ½ 0]
 - o diffuse background at [2 1 0]
- ~ 1.5 nm ordered domains at room temperature (MC-2)
- Short-Range Order dissolves above T = 600 °C (MCW)

Short-Range Order in Compositionally Complex Alloys?

(b) Locally resolved lattice distortions

FeCoNiCrMn Entropy 2016, 18, 321

- Small element-resolved mean lattice distortions (~0.1%)
- High local fluctuations of lattice distortions (~2-3%)

Al1.3CoCrCuFeNi *Nat. Comm. 2015, 6, 5964*

• Structure <10 Å not well modelled by cubic fcc

• AIMD simulations show preferred nearest neighbors

	Experimental				
X-ray absorption spectroscopy 5 KeV < E < 10 KeV	 BESSYII: beamlines KMC-2 and KMC-3 Mode: fluorescence Temperatures: 20 K – 300 K 				
	RESSVII: Russian-German heamline				
Soft X-ray Absorption Spectroscopy 100 eV < E < 1500 eV	Mode: total electron yield (<10nm information depth) in ultra-high vacuum				
Hardness measurements	Vickers indentationNanoindentation				
Ab-initio molecular dynamics simulations	Dr. Yao Liu (Shandong University) Vienna ab initio simulation package				
Al ₈ Co ₁₇ Cr ₁₇ Cu ₈ Fe ₁₇ Ni ₃₃ specimens 2-to-4 components precursors	Bulk (Single crystal, polycrystal) Splat				

Results: Soft X-ray absorption spectroscopy

pure Co (red line) and in CCA (black line) L_{2,3} absorption spectra of Fe in pure Fe (red line) and in CCA (black line) L_{2,3} absorption spectra of Ni in pure Ni (red line) and in CCA (black line)

Spin-orbit splitting visible in all spectra ($\Delta E(Co)$: $\approx 15 \text{ eV}$), $\Delta E(Fe)$: $\approx 13 \text{ eV}$, $\Delta E(Ni)$: $\approx 17 \text{ eV}$)

- Absorption spectrum of Co/Fe in CCA similar to absorption spectra of Co/Fe pure metals
- \Rightarrow Electronic structure of Co/Fe in CCA similar to that of Co/Fe metals
- Absorption spectrum of Ni in CCA shifted to higher energy compared with Ni in Ni metal
- ⇒ Electronic structure of Ni in Ni dissimilar to Ni in CCA
 (i) higher binding energy of Ni 2p levels in CCA
 (ii) shift in density of empty Ni d-states

Senkovskiy et al., Birding energy (eV) J. Alloys and Compounds 537 (2012)

Results: Extended X-ray Absorption Fine Structure

AI missing. AI-K edge logistically difficult to measure (few beamlines available)

1st shell bond lengths depend on the element (Short-range order!)

- Lowest for Co (2.510(2) Å, extrapolation for T < 50K)
- Highest for Cu (2.536(3) Å, extrapolation for T < 50K)

 $\sigma^2~$ for Ni-1st shell is half the value compared to that of Cr, Fe and Co

- 1st shell around Ni more ordered (highest at.% of Ni in CCA a possible reason)
- Noisy spectra at Cu-K edge do not allow reliable σ^2 refinement

Results: hardness

- Hardness of splats higher than hardness of bulk specimens
- Data scattering on splats higher than on bulk specimens
- Decrease in hardness at 850 °C with increasing annealing time

Two-hardening mechanisms

T > 900°C : short-range order in single phase region T < 900°C : precipitation mechanism in γ/γ ' phase region

Results: ab initio molecular dynamics

- Crystalline state not reached at 1000°C (still liquid state)
- Liquid state reveals pronounced Short-Range Order
- Al prefers Ni/Co/Cu as nearest neighbors

	AI	Cr	Fe	Со	Ni	Cu
R(Å)	1.43	1.25	1.24	1.25	1.25	1.28

Soft X-ray absorption spectroscopy: Ni electronic structure seems to be different than the corresponding Ni pure metal		Further studies and measurements (e.g. at AI and Cr L-edges) needed
 Extended X-ray absorption fine structure: 1st shell around Co and Cu atoms are the smaller and the bigger, respectively. 1st shell around Ni is the most ordered 		AI-K edge spectrum still missing
		Any relation to Ni-electronic structure?
ardness Depends on temperature and annealing time		 Two hardening mechanisms: SRO increase (single phase) Precipitation (γ/γ' region)
Depends on specimen nature (bulk vs splat)		Splat vs bulk CCAs in XAS?
Ab initio molecular dynamics Preferred nearest neighbors for AI (Ni, Co, Cu)		To be proved experimentally (e.g. XAS on AI-K edge)

- Prof. Dr. John Banhart, as principal investigator of the project
- Prof. Dr. Gerhard Schumacher and Dr. A. Manzoni as additional and helpful project investigators
- Dr. A. Manzoni, Dr. T. Scherb, Dr. D. Zhou, D. Ning, L. Zhang, C. Касатиков for performing/helping the X-ray absorption spectroscopy measurements and analysis
- A. Öner, C. T. Cakir, for the hardness measurements
- Dr. Y. Liu, for molecular dynamics simulations

Thank you for your attention!

Results: K-edge X-ray absorption near edge structure (XANES)

XANES spectra for Cr, Fe, Co, Ni and Cu K-edges at 20 K in the CCA. Black lines represent reference foils. Pure metals and CCA:

K-edge split into two transitions

1s → mixed state (4s-4p-3d) 1s → 4p state

• Fe, Cr metals have bcc structure, Co metal hcp structure. Metals spectra not easily comparable with CCA spectra

Study of e.g. 2-component (FeNi) and 3component (CoFeNi) alloys with fcc structure is necessary