Role of SFE on deformation texture evolution in non-equiaatomic fcc CrFeMnCoNi high-entropy alloys

1Dan Sathiaraj G, 2Rajib Kalsar, 2Satyam Suwas, 1Werner Skrotzki

1Institute of Solid State and Materials Physics, TU Dresden, Germany
2Department of Materials Science and Engineering, IISC Bangalore, India
Contents

Introduction

Motivation

Objective

Microstructure and texture evolution
 - cold-rolling
 - cryo-rolling

Summary and conclusions
The equiatomic CrMnFeCoNi quinary alloy is one of the most investigated HEA system so far.
- SFE (20-25 mJ/m\(^2\)) \[1-2\]
- Mechanical nano-twinning

A series of non-equiatomic CrMnFeCoNi HEAs with varying elemental concentration was designed to lower the SFE \[3-5\].

By lowering the SFE the TWIP and TRIP effect have been observed \[6-9\]
Motivation

Very few single phase fcc HEAs have been studied to understand the micro-mechanisms of deformation with respect to microstructure and texture evolution.

A weak brass-type texture is observed in CrFeMnCoNi HEA after 90% rolling [10].

Haase et al. reported a transition from copper-type to the brass-type texture at 50% CR reduction [11].

Tazuddin et al. observed brass-type texture evolution without formation of deformation twins in CuFeMnCoNi HEA [12]
Objective

Comprehensive understanding of the microstructure and texture evolution in these fcc HEAs

Investigation of the micro-mechanisms of deformation of non-equiaatomic fcc HEAs as a function of SFE, processing temperature and imposed strain level

Study the role of slip, twinning and shear banding on texture evolution during deformation as a function of SFE and processing temperature
Non-equatomic HEAs investigated

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Designation</th>
<th>SFE (mJ/m²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni_{26}Fe_{20}Cr_{14}Co_{20}Mn_{20}</td>
<td>HEA-1</td>
<td>57</td>
<td>Zaddach et al. [4]</td>
</tr>
<tr>
<td>Ni_{25}Fe_{20}Cr_{20}Co_{15}Mn_{20}</td>
<td>HEA-2</td>
<td>38</td>
<td>Liu et al. [5]</td>
</tr>
<tr>
<td>Ni_{18.5}Fe_{18.5}Cr_{18.5}Co_{36}Mn_{18.5}</td>
<td>HEA-3</td>
<td>10</td>
<td>Zaddach et al. [4]</td>
</tr>
</tbody>
</table>
Diffractograms

HEA-1

HEA-2

HEA-3

Black lines: Starting HEAs
Red lines: 90% Cold-rolled HEAs
Blue lines: 90% Cryo-rolled HEAs
Starting microstructure and texture

Mean Grain Size 21 µm
Mean Grain Size 23 µm
Mean Grain Size 20 µm

Pole figures
Cold-rolling microstructure

IPF maps

Grain boundary maps

BSE images

Yellow lines: LAGBs (>2-15°)
Black lines: HAGBs (>15°)
Red lines: 60° <111>

Arrows mark shear bands
Cold-rolling texture

Cube (C): {001}<100>
Copper (Cu): {112}<111>
Goss (G): {110}<001>
Brass (Bs): {110}<112>

Miller indices:

- φ₁ = 45°
- φ₂ = 90°

Texture maps for different HEA:
- HEA-1:
 - 20%: Max=3.549
 - 40%: Max=3.638
 - 90%: Max=5.928
- HEA-2:
- HEA-3:
Cryo-rolling microstructure

IPF maps

- Cryo20%
- Cryo40%
- Cryo90%

Grain boundary maps

- Yellow lines: LAGBs (>2-15°)
- Black lines: HAGBs (>15°)
- Red lines: 60° <111>

BSE images

- Arrows mark shear bands

Yellow lines: LAGBs (>2-15°)
Black lines: HAGBs (>15°)
Red lines: 60° <111>
Cryo-rolling texture

HEA-1

HEA-2

HEA-3

Max=4.530

Max=5.111

Max=6.565

Miller Indices

- Cube (C): \{001\}<100>
- Copper (Cu): \{112\}<111>
- Goss (G): \{110\}<001>
- Brass (Bs): \{110\}<112>
All HEAs develop a heterogeneous microstructure with fine-scale shear bands after 90% CR. The texture is of brass-type both at room and cryogenic temperature.

The deformation mechanisms are dislocation slip in the early stage of rolling and deformation twinning at intermediate stage followed by shear banding in the final stage.

The intensity of the brass-type texture is related to deformation twinning and shear banding the activity of which is increasing with lowering the SFE.
References:

Acknowledgments

The presenter (G Dan Sathiaraj) would like to thank the Alexander von Humboldt foundation for financial support during his stay at the Dresden University of Technology.

Thanks for your attention
Queries?